A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Revisiting the Interface Dynamics of MXene/Rubber Elastomers: Multiscale Mechanistic Insights into Collaborative Bonding for Robust Self-Healing Sensors. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sophisticated flexible strain sensors based on MXene/rubber with self-healing capabilities are poised to transform future deformable electronics by restoring impaired performance after repeated deformation. Despite their potential, integrating excellent self-healing properties with superior mechanical strength in a single system remains a significant challenge due to simplistic interface architectures with weak bonds and limited understanding of MXene/rubber interface dynamics. To address this, a novel metal coordination bonding scheme has been developed, synergizing with dynamic hydrogen bonding to enhance interface bonding strength, enabling both outstanding mechanical and self-healing properties. Using in situ synchrotron radiation techniques, a multiscale investigation of MXene/rubber interface dynamics provides valuable insights, linking bonding strength to mechanical performance. These findings not only deepen our understanding of interface evolution in deformable electrodes but also offer a promising path for designing advanced self-healable strain sensors with superior mechanical properties.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.4c04547DOI Listing

Publication Analysis

Top Keywords

interface dynamics
12
strain sensors
8
self-healing properties
8
superior mechanical
8
mxene/rubber interface
8
bonding strength
8
bonding
5
interface
5
revisiting interface
4
mxene/rubber
4

Similar Publications