98%
921
2 minutes
20
Background And Aims: Clubroot caused by the soilborne obligate parasite , is a devastating disease of Chinese cabbage and other crucifers. The innate diversity and adaptability of this pathogen pose significant challenges to effective control measures. However, the varied response mechanisms exhibited by hosts to pathotype 11 at a molecular level are still unclear.
Methods And Results: This study investigated the resistance response and underlying molecular mechanism of two Chinese cabbage () varieties (JP and 83-1) to pathotype 11 through comparative transcriptome analysis and microscopic study. Results demonstrated that 14 days after inoculation (dai) is a critical time point of the infection process for resistant variety to inhibit the proliferation of . Although the highly resistant variety JP did not exhibit a complete immune response to pathotype 11, it demonstrated a significant resistance level against pathotype 11 by restricting its proliferation in the xylem vessels. Microscopic analysis at 21 dai revealed that the resistant cultivar (JP) root structure remained largely unaffected, while the roots of the susceptible cultivar (83-1) exhibited significant tissue distortion and gall formation, underscoring the effectiveness of the resistance mechanisms. Comparative transcriptome analysis revealed substantial differences in the number and types of differentially expressed genes (DEGs) between the two cultivars, highlighting the key pathways involved in the resistance response. In the resistant cultivar (JP), a total of 9,433 DEGs were identified, with 4,211 up-regulated and 5,222 down-regulated. In contrast, the susceptible cultivar (83-1) exhibited 6,456 DEGs, with 2,781 up-regulated and 3,675 down-regulated. The resistant cultivar showed a pronounced activation of genes involved in hormone signaling, cell wall, secondary metabolism, redox state, and signaling process. Therefore, our speculation revolves around the potential resistant mechanism of this variety, which inhibits the proliferation of in the roots via secondary metabolites, cell wall, and ROS and also regulates physiological mechanisms mediated by plant hormones such as ABA to adapt to adverse environmental conditions such as water scarcity induced by the pathogen.
Conclusion: This study unveils the intricate defense mechanisms potentially activated within Chinese cabbage when confronted with pathotype 11, offering valuable insights for breeding programs and the development of novel strategies for managing clubroot disease in Brassica crops. Furthermore, this study highlights the pivotal role of host-specific molecular defense mechanisms that underlie resistance to pathotype 11.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802504 | PMC |
http://dx.doi.org/10.3389/fmicb.2025.1495243 | DOI Listing |
J Hazard Mater
September 2025
State Key Laboratory of Nutrient Use and Management, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
Cadmium (Cd) contamination in vegetables poses a potential risk to human health; thus an accurate soil Cd threshold is crucial for early warning to ensure safe production. In this study, a national-scale dataset of Cd contents in agricultural soils and vegetables in China was compiled to assess the dietary exposure risk, and a hybrid approach combining conditional inference trees (CITs) and species sensitivity distribution (SSD) was established to derive soil Cd thresholds. The results showed that amaranth, butterhead lettuce, Chinese cabbage, coriander, and garlic had higher Cd accumulation ability among 34 species studied.
View Article and Find Full Text PDFJ Genet Genomics
September 2025
College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Beibei, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China. Elec
Flowering time is a critical agronomic trait with a profound effect on the productivity and adaptability of rapeseed (Brassica napus L.). Strategically advancing flowering time can reduce the risk of yield losses due to extreme climatic conditions and facilitate the cultivation of subsequent crops on the same land, thereby enhancing overall agricultural efficiency.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
School of Pharmaceutical Sciences Guizhou University, Guiyang 550025 P. R. China.
Insecticide misuse has caused pest resistance, stressing the need for novel pesticides. The isoxazoline structure offers broad-spectrum effectiveness, mammalian safety, and no cross-resistance. Developing efficient insecticides with this scaffold remains challenging.
View Article and Find Full Text PDFPlant Physiol Biochem
September 2025
State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China. Electronic address:
Cabbage (Brassica oleracea var. capitata) is an important vegetable crop that is widely cultivated throughout the world. Plant height is a key agronomic trait in cabbage, influencing architecture and yield, and is mainly determined by cell division and stem expansion.
View Article and Find Full Text PDFPlant Dis
September 2025
hainan universityhaikou, China, 570228;
Jackfruit (Artocarpus heterophyllus Lam.), a crucial economic crop in tropical regions, has recently been devastated by a novel gummosis disease in Hainan and Yunnan Provinces of China. This gummosis primarily affects the stems and branches of jackfruit, causing gum exudation, bark cracking, and plant death, which severely threatens the sustainable development of the industry.
View Article and Find Full Text PDF