98%
921
2 minutes
20
Sphingolipids are critical components of cellular membranes that play a pivotal role in modulating ion channel function by forming lipid rafts that stabilize and localize these channels. These lipids regulate membrane fluidity and protein-lipid interactions, directly influencing ion channel activity, trafficking, and signaling pathways essential for maintaining cellular homeostasis. Despite their fundamental role, the impact of sphingolipids on ion channel functionality, particularly within the nervous system, remains insufficiently understood. This study addresses this gap by examining the influence of sphingolipids on transient receptor potential canonical 5 (TRPC5), a key brain ion channel involved in sensory transduction and linked to conditions such as obesity, anxiety, and postpartum depression when disrupted. In this study, we demonstrate that TRPC5 is localized within lipid rafts. Inhibition of sphingolipid synthesis through myrioncin (Myr), the sphingomyelin synthase 2 inhibitor Ly93, or D,L-erythro-PDMP hydrochloride (PMDP) significantly disrupts TRPC5 localization at the plasma membrane. Treatment with lipid raft disruptors methyl-β-cyclodextrin (MCD) or sphingomyelin phosphodiesterase 3 (SMPD3), in conjunction with sphingolipid synthesis inhibitors, led to decreased TRPC5-mediated calcium flux and currents. This highlights the critical importance of TRPC5 localization in lipid rafts for its functionality. Furthermore, LC-MS/MS-based sphingolipidomics has shown that a balanced sphingolipid profile is crucial for channel function. Alterations in sphingolipid metabolism, especially the deficiency of sphingomyelin and glycosphingolipids, may primarily disrupt lipid raft structure. Interactions between amino acid residues with phenyl ring side chains and lipids at the inner and outer plasma membrane edges serve as 'fixators', anchoring TRPC5 channels within lipid rafts. Given the structural similarities among TRP channels, we propose that sphingolipid metabolic homeostasis may universally influence TRP channel activity, potentially explaining diverse neurological disorder phenotypes associated with sphingolipid metabolism disruptions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phrs.2025.107648 | DOI Listing |
Circ Genom Precis Med
September 2025
Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, London, United Kingdom (W.J.Y., M.M.S., J.R., S.v.D., H.R.W., A.T., P.B.M.).
Background: There is a higher prevalence of heart rate corrected QT (QTc) prolongation in patients with diabetes and metabolic syndrome. QT interval genome-wide association studies have identified candidate genes for cardiac energy metabolism, and experimental studies suggest that polyunsaturated fatty acids have direct effects on ion channel function. Despite this, there has been limited study of metabolite concentration relationships with QT intervals.
View Article and Find Full Text PDFAdv Mater
September 2025
Department of Materials Science & Engineering, Kyung Hee University, Yongin, 17104, Republic of Korea.
Memtransistors are active analog memory devices utilizing ionic memristive materials as channel layers. Since their introduction, the term "memtransistor" has widely been adopted for transistors exhibiting nonvolatile memory characteristics. Currently, memtransistor devices possessing both transistor on/off functionality and nonvolatile memory characteristics include ferroelectric field-effect transistors (FeFETs) and charge-trap flash (floating gate), yet ionic memtransistors have not matched their performance.
View Article and Find Full Text PDFJ Innate Immun
August 2025
Piezo-type mechanosensitive ion channel component 1 (Piezo1) is an evolutionarily conserved and multifunctional mechanosensitive ion channel protein that has emerged as a significant contributor to the pathogenesis of inflammatory bowel disease (IBD). Piezo1 plays a crucial role in regulating intestinal barrier integrity, immune responses, and the intestinal nervous system, thereby influencing disease progression. Its expression patterns correlate with disease severity and inflammatory markers in IBD patients, indicating its potential as a diagnostic and prognostic biomarker.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China.
Strong intermolecular interactions facilitate the formation of efficient ion transport channels, which, in turn, significantly boost the performance of anion exchange membranes (AEMs). Herein, 9-anthracene methanol with both π-π stacking and hydrogen bonding intermolecular forces is used as a bifunctional unit to synthesize high-performance AEMs through the Friedel-Crafts superacid catalytic reaction for the first time. The π-π stacking in the bifunctional units can induce hydrophilic pyridine cations to aggregate, and the hydrogen bonding can provide transport sites for OH and water molecules in the hydrophobic component.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China.
Tailoring the crystalline structure and facet orientation of T-NbO anode electrodes is pivotal for optimizing the Li transport kinetics. Herein, a crystallization engineering strategy is employed to synthesize urchin-like T-NbO microspheres composed of single-crystalline whiskers growing along the (001) orientation. These whiskers are characterized by nearly 100% exposed vertical (001) facets that accelerate Li diffusion.
View Article and Find Full Text PDF