Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Protecting data from management is a significant task at present. Digital images are the most general data representation. Images might be employed in many areas like social media, the military, evidence in courts, intelligence fields, security purposes, and newspapers. Digital image fakes mean adding infrequent patterns to the unique images, which causes a heterogeneous method in image properties. Copy move forgery is the firmest kind of image forgeries to be perceived. It occurs by duplicating the image part and then inserting it again in the image itself but in any other place. If original content is not accessible, then the forgery recognition technique is employed in image security. In contrast, methods that depend on deep learning (DL) have exposed good performance and suggested outcomes. Still, they provide general issues with a higher dependency on training data for a suitable range of hyperparameters. This manuscript presents an Enhancing Copy-Move Video Forgery Detection through Fusion-Based Transfer Learning Models with the Tasmanian Devil Optimizer (ECMVFD-FTLTDO) model. The objective of the ECMVFD-FTLTDO model is to perceive and classify copy-move forgery in video content. At first, the videos are transformed into distinct frames, and noise is removed using a modified wiener filter (MWF). Next, the ECMVFD-FTLTDO technique employs a fusion-based transfer learning (TL) process comprising three models: ResNet50, MobileNetV3, and EfficientNetB7 to capture diverse spatial features across various scales, thereby enhancing the capability of the model to distinguish authentic content from tampered regions. The ECMVFD-FTLTDO approach utilizes an Elman recurrent neural network (ERNN) classifier for the detection process. The Tasmanian devil optimizer (TDO) method is implemented to optimize the parameters of the ERNN classifier, ensuring superior convergence and performance. A wide range of simulation analyses is performed under GRIP and VTD datasets. The performance validation of the ECMVFD-FTLTDO technique portrayed a superior accuracy value of 95.26% and 92.67% compared to existing approaches under GRIP and VTD datasets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11807230PMC
http://dx.doi.org/10.1038/s41598-025-88592-2DOI Listing

Publication Analysis

Top Keywords

transfer learning
12
copy-move video
8
video forgery
8
forgery detection
8
fusion-based transfer
8
tasmanian devil
8
devil optimizer
8
ecmvfd-ftltdo model
8
ecmvfd-ftltdo technique
8
ernn classifier
8

Similar Publications

Driven by eutrophication and global warming, the occurrence and frequency of harmful cyanobacteria blooms (CyanoHABs) are increasing worldwide, posing a serious threat to human health and biodiversity. Early warning enables precautional control measures of CyanoHABs within water bodies and in water works, and it becomes operational with high frequency in situ data (HFISD) of water quality and forecasting models by machine learning (ML). However, the acceptance of early warning systems by end-users relies significantly on the interpretability and generalizability of underlying models, and their operability.

View Article and Find Full Text PDF

Study Objective: Accurately predicting which Emergency Department (ED) patients are at high risk of leaving without being seen (LWBS) could enable targeted interventions aimed at reducing LWBS rates. Machine Learning (ML) models that dynamically update these risk predictions as patients experience more time waiting were developed and validated, in order to improve the prediction accuracy and correctly identify more patients who LWBS.

Methods: The study was deemed quality improvement by the institutional review board, and collected all patient visits to the ED of a large academic medical campus over 24 months.

View Article and Find Full Text PDF

Background: In-hospital cardiac arrest (IHCA) remains a public health conundrum with high morbidity and mortality rates. While early identification of high-risk patients could enable preventive interventions and improve survival, evidence on the effectiveness of current prediction methods remains inconclusive. Limited research exists on patients' prearrest pathophysiological status and predictive and prognostic factors of IHCA, highlighting the need for a comprehensive synthesis of predictive methodologies.

View Article and Find Full Text PDF

Developing low-temperature gas sensors for parts per billion-level acetone detection in breath analysis remains challenging for non-invasive diabetes monitoring. We implement dual-defect engineering via one-pot synthesis of Al-doped WO nanorod arrays, establishing a W-O-Al catalytic mechanism. Al doping induces lattice strain to boost oxygen vacancy density by 31.

View Article and Find Full Text PDF

Objective: To explore B cell infiltration-related genes in endometriosis (EM) and investigate their potential as diagnostic biomarkers.

Methods: Gene expression data from the GSE51981 dataset, containing 77 endometriosis and 34 control samples, were analyzed to detect differentially expressed genes (DEGs). The xCell algorithm was applied to estimate the infiltration levels of 64 immune and stromal cell types, focusing on B cells and naive B cells.

View Article and Find Full Text PDF