Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Material properties gradually degrade under cyclic loading, leading to catastrophic failure. It results in large costs for inspection, maintenance, and downtime. Besides, materials require combinations of performance such as load bearing and energy dissipation. However, improving one performance of a material often sacrifices another performance, making it difficult to create materials with optimal performance profiles. Here we report a liquid-infused porous piezoelectric scaffold (LIPPS) that simultaneously enhances its load-bearing and energy dissipation capability under cyclic loading. For example, after 12 million loading cycles, LIPPS increases its modulus by 3600% and hysteresis by 3000%. From a CT study, this behavior is attributed to the self-recoverable mineralization under mechanical loading. Moreover, LIPPS shows a reprogrammable stiffness distribution based on the loading distribution, which enables the material to generate multiple shapes by self-folding. Our findings can contribute toward unprecedented opportunities in soft robotics, vehicles, infrastructure, and tissue engineering and contribute to the new paradigm of material selection with improved resilience and sustainability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11804925PMC
http://dx.doi.org/10.1126/sciadv.adt3979DOI Listing

Publication Analysis

Top Keywords

energy dissipation
12
cyclic loading
12
load-bearing energy
8
dissipation capability
8
capability cyclic
8
loading
6
material
5
material dynamically
4
dynamically enhancing
4
enhancing load-bearing
4

Similar Publications

Gaining a fundamental understanding of turbulent flows of dilute polymer solutions has been a challenging and outstanding problem for a long time. In this Letter, we examine homogeneous, isotropic polymeric turbulence at large Reynolds and Deborah numbers through direct numerical simulations. While at the largest scales at which the flow inertial turbulence exists, we find that the flow is fundamentally altered from Newtonian turbulence below the Kolmogorov scale.

View Article and Find Full Text PDF

To investigate the axial compressive behavior of CFRP-PVC square tube-embedded aluminum concrete columns, five specimens and one control specimen without I-shaped aluminum were tested under uniaxial compression, with the number of CFRP layers and spacing as variable parameters. The failure modes, load-displacement responses, and mechanical properties such as peak load, ductility, stiffness, and energy dissipation were systematically analyzed. Results showed that the incorporation of I-shaped aluminum improved the peak load and ductility by an average of 48.

View Article and Find Full Text PDF

Carbon dots (CDs) represent a new class of nontoxic and sustainable nanomaterials with increasing applications. Among them, bright and large Stokes-shift CDs are highly desirable for display and imaging, yet the emission mechanisms remain unclear. We obtained structural signatures for the recently engineered green and red CDs by ground-state femtosecond stimulated Raman spectroscopy (FSRS), then synthesized orange CDs with similar size but much higher nitrogen dopants than red CDs.

View Article and Find Full Text PDF

Inspired by the rigid exoskeleton and elastic inner tissues of crustaceans, a bilayer gel integrating high-strength rigidity and soft cushioning with high interfacial adhesion (1060 ± 40 J m ) is developed via a stepwise solid-liquid phase crosslinking strategy. Herein, a prefrozen high-concentration polyvinyl alcohol (PVA) solution forms a solid-state structural framework, while a subsequently cast low-concentration PVA solution generates a flexible layer. Partial thawing of the frozen gel during casting triggers molecular chain interpenetration at the interface, synergistically enhanced by controlled molecular penetration, freeze-thaw cycles, and salt-induced crystallization.

View Article and Find Full Text PDF

In confluent cell monolayers, patterns of cell forces and motion are systematically altered near topological defects in cell shape. In turn, defects have been proposed to alter cell density, extrusion, and invasion, but it remains unclear how the defects form and how they affect cell forces and motion. Here, we studied +1/2 defects, and, in contrast to prior studies, we observed the concurrent occurrence of both tail-to-head and head-to-tail defect motion in the same cell monolayer.

View Article and Find Full Text PDF