Material properties gradually degrade under cyclic loading, leading to catastrophic failure. It results in large costs for inspection, maintenance, and downtime. Besides, materials require combinations of performance such as load bearing and energy dissipation.
View Article and Find Full Text PDFControlling the growth of material is crucial in material processing for desired properties. Current approaches often involve sophisticated equipment for controlling precursors and monitoring material formation. Here we report a self-limiting material growth mechanism controlled by the experienced mechanical loading without the need for precise control over precursors or monitoring material growth.
View Article and Find Full Text PDFACS Appl Bio Mater
August 2023
Acoustic sensors are able to capture more incident energy if their acoustic impedance closely matches the acoustic impedance of the medium being probed, such as skin or wood. Controlling the acoustic impedance of polymers can be achieved by selecting materials with appropriate densities and stiffnesses as well as adding ceramic nanoparticles. This study follows a statistical methodology to examine the impact of polymer type and nanoparticle addition on the fabrication of acoustic sensors with desired acoustic impedances in the range of 1-2.
View Article and Find Full Text PDFJ Acoust Soc Am
September 2022
Carbon−polymer composite-based pressure sensors have many attractive features, including low cost, easy integration, and facile fabrication. Previous studies on carbon−polymer composite sensors focused on very high sensitivities for low pressure ranges (10 s of kPa), which saturate quickly at higher pressures and thus are ill-suited to measure the high pressure ranges found in various applications, including those in underwater (>1 atm, 101 kPa) and industrial environments. Current sensors designed for high pressure environments are often difficult to fabricate, expensive, and, similarly to their low-pressure counterparts, have a narrow sensing range.
View Article and Find Full Text PDFJ Neural Eng
April 2021
. Free-floating implantable neural interfaces are an emerging powerful paradigm for mapping and modulation of brain activity. Minuscule wirelessly-powered devices have the potential to provide minimally-invasive interactions with neurons in chronic research and medical applications.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2020
Optical recording of genetically encoded calcium indicator (GECI) allows neuroscientists to study the activity of genetically labeled neuron populations, but our current tools lack the resolution, stability and are often too invasive. Here we present the design concepts, prototypes, and preliminary measurement results of a super-miniaturized wireless image sensor built using a 32nm Silicon-on-Insulator process. SOI process is optimal for wireless applications, and we can further thin the substrate to reduce overall device thickness to ~25μm and operate the pixels using back-side illumination.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
October 2019
Wirelessly powered implants are increasingly being developed to interface with neurons in the brain. They often rely on microelectrode arrays, which are limited by their ability to cover large cortical surface areas and long-term stability because of their physical size and rigid configuration. Yet some clinical and research applications prioritize a distributed neural interface over one that offers high channel count.
View Article and Find Full Text PDF