98%
921
2 minutes
20
Developing solid-state electrolytes (SSEs) is a critical task for advancing all-solid-state batteries (ASSBs) that promise a high energy density and improved safety. The dominant strategy in engineering advanced SSEs has been substitutional doping, where foreign atoms are introduced into the atomic lattice of a host material to enhance ionic conduction. This enhancement is typically attributed to optimized charge carriers' concentration or lattice structure alterations. In this study, we extend the concept of substitutional doping to explore its effects on chemical bond modulation and the resulting impact on ionic conduction in halide SSEs. As a case of study, we demonstrate that cation dopants with high charge density indices (e.g., Al and Fe) can increase the covalency of metal-halide (M-X) bonds and induce the local asymmetric field of force, resulting in higher site energy and lower migration barriers, which significantly enhance the ionic conduction in halide frameworks. Specifically, we developed a series of halide SSEs with ionic conductivities exceeding the benchmark value of 1 mS cm at room temperature. Detailed investigations, including neutron powder diffraction, pair distribution function analysis, and first-principles calculations, are performed to gain an insight into the mechanisms behind this adjustment. Furthermore, these materials exhibit enhanced deformability due to increased covalency of the metal halide framework, enabling high-performance ASSB prototypes operatable at low stacking pressures (<10 MPa). These advancements deepen our understanding of superionic conduction in halide SSEs and mark an important step toward the practical application of ASSBs in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.4c16514 | DOI Listing |
Nature
September 2025
Research Center for Industries of the Future, Westlake University, Hangzhou, China.
The electrolyte-electrode interface serves as the foundation for a myriad of chemical and physical processes. In battery chemistry, the formation of a well-known solid-electrolyte interphase (SEI) plays a pivotal role in ensuring the reversible operations of rechargeable lithium-ion batteries (LIBs). However, characterizing the precise chemical composition of the low crystallinity and highly sensitive SEI presents a formidable challenge.
View Article and Find Full Text PDFJ Adv Res
September 2025
(1)School of Biological Engineering, Zhuhai Campus of Zunyi Medical University, Guangdong 519000, China. Electronic address:
Introduction: Traditional hydrogels with poor mechanical properties and lack of biological activities severely limit their application in wound therapy. Designing multifunctional hydrogels for monitoring and accelerating wound healing remains imperative.
Objectives: The aim of this study is to develop a multifunctional antifreeze ionic conductive Gel-TBA@organohydrogel with antibacterial, anti-inflammatory and antioxidant properties for monitoring and wound treatment.
J Colloid Interface Sci
September 2025
Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, PR China. Electronic address:
Ionic conductive hydrogels show promise for flexible sensors in wearables and e-skins, but balancing mechanical strength with high conductivity remains challenging. Herein, a triple-network ionic conductive hydrogel based on poly(acrylic acid) (PAA) was developed, synergistically reinforced by dissolved cellulose (dCel) and aramid nanofibers (ANF), with Al/Zn bimetallic ions serving as the conductive medium. Intriguingly, dCel was in-situ generated using the concentrated Al/Zn bimetallic salt solutions as the cellulose solvent, following the complete dissolution of the pulp fibers driven by the intensive ionic hydration of Al/Zn ions.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
September 2025
Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via De Sanctis, Campobasso, 86100, Italy. Electronic address:
Four different biomedical patches were bioprinted using nanocomposite hydrogels of sodium alginate/gelatin, sodium alginate/gelatin/indocyanine green freely dispersed, sodium alginate/gelatin/empty liposomes and sodium alginate/gelatin/indocyanine green loaded liposomes. Quasi-static and dynamic nanoindentations of the patch surfaces were performed to examine the effect of the single component on the mechanical response. The combination of results suggests that the mechanical structure of the gels is strongly influenced by crosslinking and the liposomes incorporating dye.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
The development of anode materials for lithium-ion batteries must meet the demands for high safety, high energy density, and fast-charging performance. TiNbO is notable for its high theoretical specific capacity, low structural strain, and exceptional fast-charging capability, attributed to its Wadsley-Roth crystal structure. However, its inherently poor conductivity has hindered its practical application.
View Article and Find Full Text PDF