98%
921
2 minutes
20
Seascape genomics facilitates integrative research on eco-evolutionary forces, such as migration and natural selection, which shape genomic connectivity and structure and provide critical insights for conservation strategies. The green abalone () is distributed from California, United States, to Baja California Sur, Mexico, and exposed to a latitudinal environmental gradient in the California Current System. This study aimed to investigate genomic population structure and potential local adaptations of green abalone across its distribution. The green abalone exhibits a distinctive neutral genetic structuring influenced by geographic distance and marine currents rather than local adaptations. Analyses using 9100 neutral and 17 outlier SNPs revealed three distinct populations: the North group (California to Ensenada, Baja California), a population on Guadalupe Island, and the South group (coastal locations of the Baja California peninsula). The research underscores the significance of life history traits and larval dispersal in shaping genetic connectivity. Connectivity appears to be influenced by geographic distance on neutral genetic structure, overshadowing natural selection's role. Furthermore, no genome-environment associations to sea surface temperature values were found. Future research should integrate genetic data with ocean circulation modeling to better understand the mechanisms and outcomes of larval dispersal and genetic connectivity. This study emphasizes the importance of both local and binational (USA-Mexico) conservation efforts, suggesting the development of SNP marker panels for traceability and management. Collaborative strategies could serve as models for binational conservation initiatives in other ecoregions, promoting sustainable management and conservation of green abalone populations and other exploited species across national borders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794835 | PMC |
http://dx.doi.org/10.1002/ece3.70913 | DOI Listing |
Food Chem
July 2025
State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China. Electronic address:
Carotenoids are vital pigments influencing both the coloration and health of aquatic organisms, particularly in species such as the Pacific abalone (Haliotis discus hannai). In this study, we identified the major carotenoids in abalone foot muscle using targeted metabolomics. Through differential metabolite analysis, we selected metabolites that met the following criteria: p-value <0.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
September 2025
Departamento de Acuicultura, Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), Carretera Tijuana-Ensenada 3918, Fraccionamiento Zona Playitas, 22860 Ensenada, Baja California, Mexico.. Electronic address:
The abalone (Haliotis sp) aquaculture industry is on the rise fueled by its high commercial demand. The use of abalone interspecific hybrids is gaining attention due to their improved growth and tolerance to environmental challenges. However, hybrids may respond differently to dietary inputs compared to their parental species, which could be optimized to achieve maximum growth potential.
View Article and Find Full Text PDFEcol Evol
February 2025
Programa de Ecología Pesquera Centro de Investigaciones Biológicas del Noroeste S.C. La Paz Baja California Sur Mexico.
Seascape genomics facilitates integrative research on eco-evolutionary forces, such as migration and natural selection, which shape genomic connectivity and structure and provide critical insights for conservation strategies. The green abalone () is distributed from California, United States, to Baja California Sur, Mexico, and exposed to a latitudinal environmental gradient in the California Current System. This study aimed to investigate genomic population structure and potential local adaptations of green abalone across its distribution.
View Article and Find Full Text PDFThe spionid polychaete Polydora hoplura Claparède, 1868 has been widely recorded boring in shells of abalone, oysters, clams, barnacle tests and sponges in temperate and subtropical waters. Molecular studies have suggested conspecificity of individuals collected worldwide but showed high genetic variability of the species with the highest diversity of haplotypes in the South African population. We have compared the morphology and genetic data of shell-boring worms from Kuwait, which were previously assigned to P.
View Article and Find Full Text PDFInt J Biol Macromol
November 2024
Marine College, Shandong University, Weihai 264209, China; State Key Laboratory of Mineral Processing, Beijing 100160, China; Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 265599, China. Electronic address:
Inspired by the formation of natural abalone shells (AS) similar to calcium salt deposition in human orthodontics, AS is used as an emulsifier in the scaffold to solve the problem of coexistence of natural and synthetic polymers and promote new bone formation. In this study, AS-stabilized and reinforced carboxymethyl chitosan/collagen/PLGA porous bionic composite scaffolds (AS/CMCS/Col/PLGA) were fabricated through the emulsion polymerization and bionic hybrid technology. As the addition of AS increased from 0.
View Article and Find Full Text PDF