98%
921
2 minutes
20
Inspired by the formation of natural abalone shells (AS) similar to calcium salt deposition in human orthodontics, AS is used as an emulsifier in the scaffold to solve the problem of coexistence of natural and synthetic polymers and promote new bone formation. In this study, AS-stabilized and reinforced carboxymethyl chitosan/collagen/PLGA porous bionic composite scaffolds (AS/CMCS/Col/PLGA) were fabricated through the emulsion polymerization and bionic hybrid technology. As the addition of AS increased from 0.75 to 3.0 wt%, homogeneous distribution of flower-like particles could be observed on the inner surface of the scaffold, and its mechanical properties were improved. Particularly, 3.0 wt% AS-doped scaffolds (S3 and C + S3) exhibited excellent inorganic mineral deposition and osteoblast proliferation and differentiation abilities in vitro. In a SD rat calvarial defect model, they effectively promoted new bone formation in the defect and accelerated expression of osteogenic-angiogenic related proteins (COLI, OCN, VEGF). By virtue of its combined merits including good mechanical properties, inducing mineralization crystallization and facilitating osteogenesis, the 3.0 wt% AS-doped scaffold promises to be employed as a novel bone repair material for bone tissue regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.135018 | DOI Listing |
Sci Rep
May 2025
University of Washington School of Aquatic and Fishery Sciences, 1122 NE Boat St, Seattle, WA, 98105, USA.
Pinto abalone (Haliotis kamtschatkana), the only abalone species native to Washington, declined by 97% in the state from 1992 to 2017. Their decline is a loss for indigenous tribes, recreational divers, and the health of subtidal rocky reefs and kelp beds. Current restoration actions are facing threats of ocean acidification and warming in the northeast Pacific.
View Article and Find Full Text PDFBiomed Mater Eng
July 2025
Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia.
BackgroundThe utilization of bioceramics for medical implants necessitates the incorporation of antibacterial properties to mitigate post-surgical inflammation of bone tissue.ObjectiveIn this research, Zn ions were introduced as an antibacterial agent into carbonate-hydroxyapatite-based honeycomb Scaffold bioceramics (CHA/HCB), with varying doping concentrations, to investigate the impact of Zn on the antibacterial activity of CHA/HCB against and .MethodsCHA was synthesized from abalone shells through the co-precipitation method, followed by the fabrication of a CHA-based scaffold with HCB using the porogen leaching technique.
View Article and Find Full Text PDFJ Struct Biol
March 2025
Instituto Andaluz de Ciencias de la Tierra (IACT-CSIC), Armilla 18100, Granada, Spain. Electronic address:
The nacre formation process is a fascinating phenomenon involving mineral phase transformations, self-assembly processes, and protein-mineral interactions, resulting in a hierarchical structure that exhibits outstanding mechanical properties. However, this process is only partially known, and many aspects of nacre structure are not well understood, especially at the molecular scale. To understand the interplay between components-aragonite, protein and chitin-of the structure of nacre observed experimentally, we investigate the interactions of a peptide that is part of the protein lustrin A, identified in the nacreous layer of the shell of the abalone Haliotis rufescens, with the (001) crystal surface of aragonite and the chitin molecule.
View Article and Find Full Text PDFThe spionid polychaete Polydora hoplura Claparède, 1868 has been widely recorded boring in shells of abalone, oysters, clams, barnacle tests and sponges in temperate and subtropical waters. Molecular studies have suggested conspecificity of individuals collected worldwide but showed high genetic variability of the species with the highest diversity of haplotypes in the South African population. We have compared the morphology and genetic data of shell-boring worms from Kuwait, which were previously assigned to P.
View Article and Find Full Text PDFBiology (Basel)
November 2024
Department of Fisheries Science, Chonnam National University, Yeosu 59626, Republic of Korea.
Perlucin is a shell matrix protein that plays a significant role in regulating shell biomineralization. This study aimed to isolate and characterize the perlucin gene and analyze its expression to explore its role in shell formation, regeneration, and responses to thermal stress and starvation in Pacific abalone. The isolated full-length cDNA sequence of is 1002 bp long, encoding a 163-amino-acid polypeptide with a signal peptide.
View Article and Find Full Text PDF