Domoic acid (DA) is a naturally occurring amino acid structurally analogous to kainic acid (KA). DA, a neurotoxin commonly associated with toxigenic Pseudo-nitzschia species, enters the food chain via filter feeders and poses a potential threat to predators such as sea stars. To assess the presence of DA, wild-collected sea stars (Pisaster ochraceus and Asterias spp.
View Article and Find Full Text PDFCoral bleaching is the largest global threat to coral reef ecosystem persistence this century. Advancing our understanding of coral bleaching and developing solutions to protect corals and the reefs they support are critical. In the present article, we, the US National Science Foundation-funded Coral Bleaching Research Coordination Network, outline future directions for coral bleaching research.
View Article and Find Full Text PDFMarine pollution threatens ecosystems, biodiversity, and human health, impacting species fitness, disrupting food webs, and degrading essential habitats. This review examines the effects of marine pollution on key species in the Salish Sea, a vital ecosystem supporting diverse wildlife, including endangered species, and local economies reliant on fishing, aquaculture, and tourism. In total, we synthesized 116 studies including chemical pollution (78), biological pollution (15), marine debris (15), and sound pollution (8).
View Article and Find Full Text PDFPinto abalone (Haliotis kamtschatkana), the only abalone species native to Washington, declined by 97% in the state from 1992 to 2017. Their decline is a loss for indigenous tribes, recreational divers, and the health of subtidal rocky reefs and kelp beds. Current restoration actions are facing threats of ocean acidification and warming in the northeast Pacific.
View Article and Find Full Text PDFCoral reefs are vital to marine biodiversity and human livelihoods, but they face significant threats from climate change. Increased ocean temperatures drive massive "bleaching" events, during which corals lose their symbiotic algae and the important metabolic resources those algae provide. Proteomics is a crucial tool for understanding coral function and tolerance to thermal stress, as proteins drive physiological processes and accurately represent cell functional phenotypes.
View Article and Find Full Text PDFIdentifying processes that promote coral reef recovery and resilience is crucial as ocean warming becomes more frequent and severe. Sexual reproduction is essential for the replenishment of coral populations and maintenance of genetic diversity; however, the ability for corals to reproduce may be impaired by marine heatwaves that cause coral bleaching. In 2014 and 2015, the Hawaiian Islands experienced coral bleaching with differential bleaching susceptibility in the species Montipora capitata, a dominant reef-building coral in the region.
View Article and Find Full Text PDFThe genomes of mitochondria and chloroplasts contain ribosomal RNA (rRNA) genes, reflecting their ancestry as free-living bacteria. These organellar rRNAs are often amplified in microbiome studies of animals and plants. If identified, they can be discarded, merely reducing sequencing depth.
View Article and Find Full Text PDFMar Pollut Bull
November 2024
This study investigated microplastic and other micro-debris pollution in sediment, seawater, sea cucumbers, and corals from fringing and patch reefs in Kāne'ohe Bay, O'ahu, Hawai'i, USA. Microplastic pollution in Kāne'ohe Bay Bay was low compared to other tropical coral reefs. Microplastics were detected in sediments (29 %), sea cucumbers (9 %), and coral (0-2 %) samples but were not quantifiable.
View Article and Find Full Text PDFMicroparticles (MP; particles <5 mm) are ubiquitous in marine environments. Understanding MP concentrations at different spatial scales in the Salish Sea, Washington, USA, can provide insight into how ecologically and economically important species may be affected. We collected mussels across the Salish Sea at regional and localized scales, chemically processed tissue to assess MP contamination, and used visual and chemical analyses for particle identification.
View Article and Find Full Text PDFPuget Sound (Washington, USA) is a large estuary, known for its profitable shellfish aquaculture industry. However, in the past decade, scientists have observed strong acidification, hypoxia, and temperature anomalies in Puget Sound. These co-occurring environmental stressors are a threat to marine ecosystems and shellfish aquaculture.
View Article and Find Full Text PDFWarming ocean temperatures are severely compromising the health and resilience of coral reefs worldwide. Coral bleaching can affect coral physiology and the energy available for corals to reproduce. Mechanisms associated with reproductive allocation in corals are poorly understood, especially after a bleaching event occurs.
View Article and Find Full Text PDFGlob Chang Biol
December 2022
The frequency and severity of marine heatwaves causing mass mortality events in tropical and temperate coral species increases every year, with serious consequences on the stability and resilience of coral populations. Although recovery and persistence of coral populations after stress events is closely related to adult fitness, as well as larval survival and settlement, much remains unknown about the effects of thermal stress on early life-history stages of temperate coral species. In the present study, the reproductive phenology and the effect of increased water temperature (+4°C and +6°C above ambient, 20°C) on larval survival and settlement was evaluated for two of the most representative Mediterranean octocoral species (Eunicella singularis and Corallium rubrum).
View Article and Find Full Text PDFCoral diseases have increased in frequency and intensity around the tropics worldwide. However, in many cases, little is known about their etiology. Montipora white syndrome (MWS) is a common disease affecting the coral Montipora capitata, a major reef builder in Hawai'i.
View Article and Find Full Text PDFInvasions by shell-boring polychaetes such as Polydora websteri Hartman have resulted in the collapse of oyster aquaculture industries in Australia, New Zealand, and Hawaii. These worms burrow into bivalve shells, creating unsightly mud blisters that are unappealing to consumers and, when nicked during shucking, release mud and detritus that can foul oyster meats. Recent findings of mud blisters on the shells of Pacific oysters (Crassostrea gigas Thunberg) in Washington State suggest a new spionid polychaete outbreak.
View Article and Find Full Text PDFRising sea temperatures and increasing pollution threaten the fate of coral reefs and millions of people who depend on them. Some reef-building corals respond to thermal stress and subsequent bleaching with increases in heterotrophy, which may increase the risk of ingesting microplastics. Whether this heterotrophic plasticity affects microplastics ingestion or whether ingesting microplastics affects heterotrophic feeding in corals is unknown.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
February 2020
Ocean acidification and increased ocean temperature from elevated atmospheric carbon dioxide can significantly influence the physiology, growth and survival of marine organisms. Despite increasing research efforts, there are still many gaps in our knowledge of how these stressors interact to affect economically and ecologically important species. This project is the first to explore the physiological effects of high pCO and temperature on the acclimation potential of the purple-hinge rock scallop (Crassadoma gigantea), a widely distributed marine bivalve, important reef builder, and potential aquaculture product.
View Article and Find Full Text PDFTo project how ocean acidification will impact biological communities in the future, it is critical to understand the potential for local adaptation and the physiological plasticity of marine organisms throughout their entire life cycle, as some stages may be more vulnerable than others. Coralline algae are ecosystem engineers that play significant functional roles in oceans worldwide and are considered vulnerable to ocean acidification. Using different stages of coralline algae, we tested the hypothesis that populations living in environments with higher environmental variability and exposed to higher levels of pCO would be less affected by high pCO than populations from a more stable environment experiencing lower levels of pCO .
View Article and Find Full Text PDFDespite being one of the simplest metazoans, corals harbor some of the most highly diverse and abundant microbial communities. Differentiating core, symbiotic bacteria from this diverse host-associated consortium is essential for characterizing the functional contributions of bacteria but has not been possible yet. Here we characterize the coral core microbiome and demonstrate clear phylogenetic and functional divisions between the micro-scale, niche habitats within the coral host.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
July 2015
Advances in nucleic acid sequencing technology are removing obstacles that historically prevented use of genomics within ocean change biology. As one of the first marine calcifiers to have its genome sequenced, purple sea urchins (Strongylocentrotus purpuratus) have been the subject of early research exploring genomic responses to ocean acidification, work that points to future experiments and illustrates the value of expanding genomic resources to other marine organisms in this new 'post-genomic' era. This review presents case studies of S.
View Article and Find Full Text PDFEnvironmental conditions can influence the physiology of marine organisms and have important implications for their reproductive performance and capacity to supply new recruits. This study examined the seasonal reproductive patterns of the coral Montipora capitata in habitats exposed to different sedimentation regimes. Although M.
View Article and Find Full Text PDFA rapidly growing body of literature documents the potential negative effects of CO2 -driven ocean acidification (OA) on marine organisms. However, nearly all this work has focused on the effects of future conditions on modern populations, neglecting the role of adaptation. Rapid evolution can alter demographic responses to environmental change, ultimately affecting the likelihood of population persistence, but the capacity for adaptation will differ among populations and species.
View Article and Find Full Text PDFOcean warming and ocean acidification, both consequences of anthropogenic production of CO2, will combine to influence the physiological performance of many species in the marine environment. In this study, we used an integrative approach to forecast the impact of future ocean conditions on larval purple sea urchins (Strongylocentrotus purpuratus) from the northeast Pacific Ocean. In laboratory experiments that simulated ocean warming and ocean acidification, we examined larval development, skeletal growth, metabolism and patterns of gene expression using an orthogonal comparison of two temperature (13°C and 18°C) and pCO2 (400 and 1100 μatm) conditions.
View Article and Find Full Text PDFParental effects are ubiquitous in nature and in many organisms play a particularly critical role in the transfer of symbionts across generations; however, their influence and relative importance in the marine environment has rarely been considered. Coral reefs are biologically diverse and productive marine ecosystems, whose success is framed by symbiosis between reef-building corals and unicellular dinoflagellates in the genus Symbiodinium. Many corals produce aposymbiotic larvae that are infected by Symbiodinium from the environment (horizontal transmission), which allows for the acquisition of new endosymbionts (different from their parents) each generation.
View Article and Find Full Text PDF