Globally, coral reefs face increasing disease prevalence and large-scale outbreak events. These outbreaks offer insights into microbial and functional patterns of coral disease, including early indicators of disease that may be present in visually-healthy tissues. Outbreak events also allow investigation of how reef-building corals, typically colonial organisms, respond to disease.
View Article and Find Full Text PDFOutbreaks of coral disease are often associated with global and local stressors like changes in temperature and poor water quality. A severe coral disease outbreak was recorded in the primary reef-building taxa spp. in a high-latitude lagoon at Norfolk Island following heat stress and pollution events in 2020.
View Article and Find Full Text PDFIntegr Org Biol
September 2022
Fish gastro-intestinal system harbors diverse microbiomes that affect the host's digestion, nutrition, and immunity. Despite the great taxonomic diversity of fish, little is understood about fish microbiome and the factors that determine its structure and composition. Damselfish are important coral reef species that play pivotal roles in determining algae and coral population structures of reefs.
View Article and Find Full Text PDFOne of the most widespread coral diseases linked to anthropogenic activities and recorded on reefs worldwide is characterized by anomalous growth formations in stony corals, referred to as coral growth anomalies (GAs). The biological functions of GA tissue include limited reproduction, reduced access to resources, and weakened ability to defend against predators. Transcriptomic analyses have revealed that, in some cases, disease progression can involve host genes related to oncogenesis, suggesting that the GA tissues may be malignant neoplasms such as those developed by vertebrates.
View Article and Find Full Text PDFCoral reefs are amongst the most biodiverse ecosystems on earth, and while stony corals create the foundational complexity of these ecosystems, octocorals and anemones contribute significantly to their biodiversity and function. Like stony corals, many octocorals contain Symbiodiniaceae endosymbionts and can bleach when temperatures exceed the species' upper thermal limit. Here, we report octocoral bleaching susceptibility and resistance within the subtropical Lord Howe Island coral reef ecosystem during and after marine heatwaves in 2019.
View Article and Find Full Text PDFCoral bleaching has increasingly impacted reefs worldwide over the past four decades. Despite almost 40 years of research into the mechanistic, physiological, ecological, biophysical and climatic drivers of coral bleaching, metrics to allow comparison between ecological observations and experimental simulations still do not exist. Here we describe a novel metric - experimental Degree Heating Week (eDHW) - with which to standardise the persistently variable thermal conditions employed across experimental studies of coral bleaching by modify the widely used Degree Heating Week (DHW) metric used in ecological studies to standardise cumulative heat loading.
View Article and Find Full Text PDFCoral bleaching has impacted reefs worldwide and the predictions of near-annual bleaching from over two decades ago have now been realized. While technology currently provides the means to predict large-scale bleaching, predicting reef-scale and within-reef patterns in real-time for all reef users is limited. In 2020, heat stress across the Great Barrier Reef underpinned the region's third bleaching event in 5 years.
View Article and Find Full Text PDFGlob Chang Biol
May 2021
Globally, collapse of ecosystems-potentially irreversible change to ecosystem structure, composition and function-imperils biodiversity, human health and well-being. We examine the current state and recent trajectories of 19 ecosystems, spanning 58° of latitude across 7.7 M km , from Australia's coral reefs to terrestrial Antarctica.
View Article and Find Full Text PDFTracy Ainsworth and Barbara Brown introduce the causes and consequences of coral bleaching.
View Article and Find Full Text PDFResearchers now recognize the importance of the coral microbiome, but they often overlook other species that live on corals and influence coral-microbe interactions. These 'interstitial associates' should be incorporated into the metaorganism concept for insights into how facilitations between associates, corals, and their microbiomes can be leveraged in ecology and restoration.
View Article and Find Full Text PDFExtreme heat wave events are now causing ecosystem degradation across marine ecosystems. The consequences of this heat-induced damage range from the rapid loss of habitat-forming organisms, through to a reduction in the services that ecosystems support, and ultimately to impacts on human health and society. How we tackle the sudden emergence of ecosystem-wide degradation has not yet been addressed in the context of marine heat waves.
View Article and Find Full Text PDFResearch into the microbiomes of natural environments is changing the way ecologists and evolutionary biologists view the importance of microorganisms in ecosystem function. This is particularly relevant in ocean environments, where microorganisms constitute the majority of biomass and control most of the major biogeochemical cycles, including those that regulate Earth's climate. Coastal marine environments provide goods and services that are imperative to human survival and well-being (for example, fisheries and water purification), and emerging evidence indicates that these ecosystem services often depend on complex relationships between communities of microorganisms (the 'microbiome') and the environment or their hosts - termed the 'holobiont'.
View Article and Find Full Text PDFBacterial diversity associated with corals has been studied extensively, however, localization of bacterial associations within the holobiont is still poorly resolved. Here we provide novel insight into the localization of coral-associated microbial aggregates (CAMAs) within tissues of the coral Acropora hyacinthus. In total, 318 and 308 CAMAs were characterized via histological and fluorescent in situ hybridization (FISH) approaches respectively, and shown to be distributed extensively throughout coral tissues collected from five sites in Japan and Australia.
View Article and Find Full Text PDFSevere marine heatwaves have recently become a common feature of global ocean conditions due to a rapidly changing climate [1, 2]. These increasingly severe thermal conditions are causing an unprecedented increase in the frequency and severity of mortality events in marine ecosystems, including on coral reefs [3]. The degradation of coral reefs will result in the collapse of ecosystem services that sustain over half a billion people globally [4, 5].
View Article and Find Full Text PDFBioessays
July 2019
If we are to ensure the persistence of species in an increasingly warm world, of interest is the identification of drivers that affect the ability of an organism to resist thermal stress. Underpinning any organism's capacity for resistance is a complex interplay between biological and physical factors occurring over multiple scales. Tropical coral reefs are a unique system, in that their function is dependent upon the maintenance of a coral-algal symbiosis that is directly disrupted by increases in water temperature.
View Article and Find Full Text PDFFEMS Microbiol Lett
March 2019
The enormous variability in richness, abundance and diversity of unknown bacterial organisms inhabiting the coral microbiome have challenged our understanding of their functional contribution to coral health. Identifying the attributes of the healthy meta-organism is paramount for contemporary approaches aiming to manipulate dysbiotic stages of the coral microbiome. This review evaluates the current knowledge on the structure and mechanisms driving bacterial communities in the coral microbiome and discusses two topics requiring further research to define the healthy coral microbiome.
View Article and Find Full Text PDFStudies of the coral microbiome predominantly characterize the microbial community of the host species as a collective, rather than that of the individual. This ecological perspective on the coral microbiome has led to the conclusion that the coral holobiont is the most diverse microbial biosphere studied thus far. However, investigating the microbiome of the individual, rather than that of the species, highlights common and conserved community attributes which can provide insights into the significance of microbial associations to the host.
View Article and Find Full Text PDFIn the last two decades, over 100 studies have investigated the structure of the coral microbiome. However, as yet there are no standardized methods applied to sample preservation and preparation, with different studies using distinct methods. There have also been several comparisons made of microbiome data generated across different studies, which have not addressed the influence of the methodology employed over each of the microbiome datasets.
View Article and Find Full Text PDFPolyp bailout is an established but understudied coral stress response that involves the detachment of individual polyps from the colonial form as a means of escaping unfavourable conditions. This may influence both the mortality and asexual recruitment of coral genotypes across a range of species. It has been observed in response to numerous stressors including high salinity and low pH.
View Article and Find Full Text PDFElevated sea surface temperatures (SSTs) are linked to an increase in the frequency and severity of bleaching events due to temperatures exceeding corals' upper thermal limits. The temperatures at which a breakdown of the coral- endosymbiosis (coral bleaching) occurs are referred to as the upper thermal limits for the coral species. This breakdown of the endosymbiosis results in a reduction of corals' nutritional uptake, growth, and tissue integrity.
View Article and Find Full Text PDFReef-building corals provide the foundation for the structural and biological diversity of coral-reef ecosystems. These massive biological structures, which can be seen from space, are the culmination of complex interactions between the tiny polyps of the coral animal in concert with its unicellular symbiotic algae and a wide diversity of closely associated microorganisms (bacteria, archaea, fungi, and viruses). While reef-building corals have persisted in various forms for over 200 million years, human-induced conditions threaten their function and persistence.
View Article and Find Full Text PDFCorals are considered one of the most complex microbial biospheres studied to date, hosting thousands of bacterial phylotypes in species-specific associations. There are, however, substantial knowledge gaps and challenges in understanding the functional significance of bacterial communities and bacterial symbioses of corals. The ubiquitous nature of some bacterial interactions has only recently been investigated and an accurate differentiation between the healthy (symbiotic) and unhealthy (dysbiotic) microbial state has not yet been determined.
View Article and Find Full Text PDFUnlabelled: For ecosystems vulnerable to environmental change, understanding the spatiotemporal stability of functionally crucial symbioses is fundamental to determining the mechanisms by which these ecosystems may persist. The coral Pachyseris speciosa is a successful environmental generalist that succeeds in diverse reef habitats. The generalist nature of this coral suggests it may have the capacity to form functionally significant microbial partnerships to facilitate access to a range of nutritional sources within different habitats.
View Article and Find Full Text PDFCoral bleaching events threaten the sustainability of the Great Barrier Reef (GBR). Here we show that bleaching events of the past three decades have been mitigated by induced thermal tolerance of reef-building corals, and this protective mechanism is likely to be lost under near-future climate change scenarios. We show that 75% of past thermal stress events have been characterized by a temperature trajectory that subjects corals to a protective, sub-bleaching stress, before reaching temperatures that cause bleaching.
View Article and Find Full Text PDF