Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Facilitating large-scale, cross-institutional collaboration in biomedical machine learning (ML) projects requires a trustworthy and resilient federated learning (FL) environment to ensure that sensitive information such as protected health information is kept confidential. Specifically designed for this purpose, this work introduces APPFLx - a low-code, easy-to-use FL framework that enables easy setup, configuration, and running of FL experiments. APPFLx removes administrative boundaries of research organizations and healthcare systems while providing secure , functionality, and . Furthermore, it is completely agnostic to the underlying computational infrastructure of participating clients, allowing an instantaneous deployment of this framework into existing computing infrastructures. Experimentally, the utility of APPFLx is demonstrated in two case studies: (1) predicting participant age from electrocardiogram (ECG) waveforms, and (2) detecting COVID-19 disease from chest radiographs. Here, ML models were securely trained across heterogeneous computing resources, including a combination of on-premise high-performance computing and cloud computing facilities. By securely unlocking data from multiple sources for training without directly sharing it, these FL models enhance generalizability and performance compared to centralized training models while ensuring data remains protected. In conclusion, APPFLx demonstrated itself as an easy-to-use framework for accelerating biomedical studies across organizations and healthcare systems on large datasets while maintaining the protection of private medical data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782895PMC
http://dx.doi.org/10.1016/j.csbj.2024.12.001DOI Listing

Publication Analysis

Top Keywords

federated learning
8
heterogeneous computing
8
easy-to-use framework
8
organizations healthcare
8
healthcare systems
8
appflx demonstrated
8
computing
5
appflx
5
enabling end-to-end
4
end-to-end secure
4

Similar Publications

The integration of multimodal single-cell omics data is a state-of-art strategy for deciphering cellular heterogeneity and gene regulatory mechanisms. Recent advances in single-cell technologies have enabled the comprehensive characterization of cellular states and their interactions. However, integrating these high-dimensional and heterogeneous datasets poses significant computational challenges, including batch effects, sparsity, and modality alignment.

View Article and Find Full Text PDF

Learning from history for personalized federated learning.

Neural Netw

September 2025

College of Information Science, North China University of Technology, Beijing, China. Electronic address:

Personalized Federated Learning (pFL) has received extensive attentions, due to its ability to effectively process non-IID data distributed among different clients. However, most of the existing pFL methods focus on the collaboration between global and local models to enrich the personalization process, but ignoring a lot of valuable historical information, which represents the unique learning trajectory of each client. In this paper, we propose a pFL method called FedLFH, which introduces a tracking variable that allows each client to preserve historical information to facilitate personalization.

View Article and Find Full Text PDF

Applications of Federated Large Language Model for Adverse Drug Reactions Prediction: Scoping Review.

J Med Internet Res

September 2025

Department of Information Systems and Cybersecurity, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, United States, 1 (210) 458-6300.

Background: Adverse drug reactions (ADR) present significant challenges in health care, where early prevention is vital for effective treatment and patient safety. Traditional supervised learning methods struggle to address heterogeneous health care data due to their unstructured nature, regulatory constraints, and restricted access to sensitive personal identifiable information.

Objective: This review aims to explore the potential of federated learning (FL) combined with natural language processing and large language models (LLMs) to enhance ADR prediction.

View Article and Find Full Text PDF

Protein kinases are central regulators of cell signaling and play pivotal roles in a wide array of diseases, most notably cancer and autoimmune disorders. The clinical success of kinase inhibitors-such as imatinib and osimertinib-has firmly established kinases as valuable drug targets. However, the development of selective, potent inhibitors remains challenging due to the conserved nature of the ATP-binding site, off-target effects, resistance mutations, and patient-specific variability.

View Article and Find Full Text PDF

Large-scale genomics data combined with Electronic Health Records (EHRs) illuminate the path towards personalized disease management and enhanced medical interventions. However, the absence of "gold standard" disease labels makes the development of machine learning models a challenging task. Additionally, imbalances in demographic representation within datasets compromise the development of unbiased healthcare solutions.

View Article and Find Full Text PDF