The digitization of histology slides has revolutionized pathology, providing massive datasets for cancer diagnosis and research. Contrastive self-supervised and vision-language models have been shown to effectively mine large pathology datasets to learn discriminative representations. On the other hand, generative models, capable of synthesizing realistic and diverse images, present a compelling solution to address unique problems in pathology that involve synthesizing images; overcoming annotated data scarcity, enabling privacy-preserving data sharing, and performing inherently generative tasks, such as virtual staining.
View Article and Find Full Text PDFLarge-scale genetic association studies have identified thousands of trait-associated risk loci, establishing the polygenic basis for common complex traits and diseases. Although prior studies suggest that many trait-associated loci are pleiotropic, the extent to which this pleiotropy reflects shared causal variants or confounding by linkage disequilibrium remains poorly characterized. To define a set of candidate loci with potentially pleiotropic associations, we performed genome-wide association study (GWAS) meta-analyses of up to 1,167 clinically relevant traits and diseases across 1,789,365 diverse individuals genetically similar to Admixed American (AMR, N = 60,756), African (AFR, N = 128,361), East Asian (EAS, N = 307,465), European (EUR, N = 1,283,907), and South Asian (SAS, N = 8,876) reference populations from the VA Million Veteran Program (MVP), UK Biobank (UKB), FinnGen, Biobank Japan (BBJ), Tohoku Medical Megabank (ToMMo), and Korean Genome and Epidemiology Study (KoGES).
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Facilitating large-scale, cross-institutional collaboration in biomedical machine learning (ML) projects requires a trustworthy and resilient federated learning (FL) environment to ensure that sensitive information such as protected health information is kept confidential. Specifically designed for this purpose, this work introduces APPFLx - a low-code, easy-to-use FL framework that enables easy setup, configuration, and running of FL experiments. APPFLx removes administrative boundaries of research organizations and healthcare systems while providing secure , functionality, and .
View Article and Find Full Text PDF