98%
921
2 minutes
20
The variation of transcriptome size across cell types significantly impacts single-cell RNA sequencing (scRNA-seq) data normalization and bulk RNA-seq cellular deconvolution, yet this intrinsic feature is often overlooked. Here we introduce ReDeconv, a computational algorithm that incorporates transcriptome size into scRNA-seq normalization and bulk deconvolution. ReDeconv introduces a scRNA-seq normalization approach, Count based on Linearized Transcriptome Size (CLTS), which corrects differential expressed genes typically misidentified by standard count per 10 K normalization, as confirmed by orthogonal validations. By maintaining transcriptome size variation, CLTS-normalized scRNA-seq enhances the accuracy of bulk deconvolution. Additionally, ReDeconv mitigates gene length effects and models expression variances, thereby improving deconvolution outcomes, particularly for rare cell types. Evaluated with both synthetic and real datasets, ReDeconv surpasses existing methods in precision. ReDeconv alters the practice and provides a new standard for scRNA-seq analyses and bulk deconvolution. The software packages and a user-friendly web portal are available.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11787294 | PMC |
http://dx.doi.org/10.1038/s41467-025-56623-1 | DOI Listing |
EMBO Mol Med
September 2025
Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, National Stem Cell Translational Resource Center & Ministry of Education Stem Cell Resource Center, Frontier Science Center for Stem Cell Research, School of Li
Primary microcephaly, a rare congenital condition characterized by reduced brain size, occurs due to impaired neurogenesis during brain development. Through whole-exome sequencing, we identified compound heterozygous loss-of-function mutations in CENTRIN 3 (CETN3) in a 5-year-old patient with primary microcephaly. As CETN3 has not been previously linked to microcephaly, we investigated its potential function in neurodevelopment in human pluripotent stem cell-derived cerebral organoids.
View Article and Find Full Text PDFPlant Biotechnol J
September 2025
Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania, USA.
Black pod disease, caused by a complex of Phytophthora species, poses a severe threat to global cacao production. This study explores the use of CRISPR-Cas9 genome editing to reduce disease susceptibility in Theobroma cacao L. by targeting the TcNPR3 gene, a known negative regulator of plant defence.
View Article and Find Full Text PDFPhysiol Plant
September 2025
School of Forestry and Grassland Science, Ningxia University, Yinchuan, China.
Using high- and low-surface flatness fruits of Ziziphus jujuba Mill. cv. "Lingwuchangzao" at different developmental stages as test materials, this study examined the mechanisms underlying variations in fruit appearance and internal quality.
View Article and Find Full Text PDFJ Therm Biol
September 2025
Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China. Electronic address:
In light of the challenges posed by global climate change, the environmental adaptability of organisms is becoming increasingly important. The Wuzhishan (WZS) pig, tolerant to high heat and humidity, is an ideal model for genomic study. By characterizing its genome and assessing its genetic diversity and runs of homozygosity (ROH), we can gain insights into its current conservation status and genomic architecture.
View Article and Find Full Text PDFPoult Sci
September 2025
College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China. Electronic address:
Shitou goose (STE) and Wuzong goose (WZE) are both characteristic goose breeds in Guangdong, China. Their growth cycle is similar, but there are huge differences in body size. One of the reasons for the difference in body size is the individual muscle mass, which is determined by myofiber development.
View Article and Find Full Text PDF