Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Acquired resistance poses a significant obstacle to the effectiveness of platinum-based treatment for cancers. As the most abundant antioxidant, glutathione (GSH) enables cancer cell survival and chemoresistance, by scavenging excessive reactive oxygen species (ROS) induced by platinum. Therapeutic strategy targeting GSH synthesis has been developed, however, failed to produce desirable effects in preventing cancer progression. Thus, uncovering mechanisms of rewired GSH metabolism may aid in the development of additional therapeutic strategies to overcome or delay resistance. Here, we identify upregulation of long noncoding RNA (lncRNA) GDIL (GSH Degradation Inhibiting LncRNA) in platinum resistant colorectal cancer (CRC) and ovarian cancer cells compared with parental ones. High expression of GDIL in resistant CRC is associated with poor survival and hyposensitivity to chemotherapy. We demonstrate that GDIL boosted GSH levels and enhances clearance of ROS induced by platinum. Metabolomic and metabolic flux analysis further reveals that GDIL promotes GSH accumulation by inhibiting GSH degradation. This is attributed by downregulation of CHAC1, an enzyme that specifically degrades intracellular GSH. Mechanistically, GDIL binds and re-localizes the nuclear protein XRN2 to the cytoplasm, where GDIL further serve as a scaffold for XRN2 to identify and degrade CHAC1 mRNA. Suppression of GDIL with selective antisense oligonucleotide, restored drug sensitivity in platinum resistant cell lines and delayed drug resistance in cell line- and patient-derived xenografts. Thus, lncRNA GDIL is a novel target to promote GSH degradation and augment platinum therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11787370PMC
http://dx.doi.org/10.1038/s41419-025-07374-wDOI Listing

Publication Analysis

Top Keywords

gsh degradation
12
gdil
9
gsh
9
long noncoding
8
noncoding rna
8
colorectal cancer
8
ros induced
8
induced platinum
8
lncrna gdil
8
platinum resistant
8

Similar Publications

Sodium Orthovanadate (SOV) mitigates alcohol & alcohol plus high-fat diet (HFD)-induced hepatotoxicity in rats.

Cell Mol Biol (Noisy-le-grand)

September 2025

Associate Professor, School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh-Punjab 147301, India.

Alcoholic fatty liver disease (AFLD) is a leading cause of chronic liver disease worldwide, contributing to significant morbidity and mortality. Despite its growing prevalence, no FDA-approved pharmacological treatments exist, leaving lifestyle modifications as the primary intervention. AFLD pathogenesis involves a complex interplay of lipid accumulation, oxidative stress, insulin resistance, and inflammation, highlighting the need for innovative therapeutic approaches.

View Article and Find Full Text PDF

Development of Zebrafish model for Iron Induced Neuroinflammation.

Fish Physiol Biochem

September 2025

Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, 56, India.

Zebrafish models have been used to research Alzheimer's disease and other neurodegenerative disorders because of their similarities to the human genetic composition and behavior. Researchers have detected iron accumulation in the post-mortem brain sections of neurodegenerative disorder patients. Therefore, the development an animal model to simulate these clinical pathological findings is important.

View Article and Find Full Text PDF

Background: Due to the complex structure and variable microenvironment in the progression of bladder cancer, the efficacy of traditional treatment methods such as surgery and chemotherapy is limited. Tumor residual, recurrence and metastasis are still difficult to treat. The integration of diagnosis and treatment based on nanoparticles can offer the potential for precise tumor localization and real-time therapeutic monitoring.

View Article and Find Full Text PDF

Introduction: The pathological mechanism of sepsis-related acute lung injury (ALI) is closely linked to mitochondrial dysfunction and pyroptosis. Although low-dose extracorporeal shock wave (SW) therapy has been widely utilized in tissue and organ injury repair, its role in sepsis-related ALI remains unclear. This study aimed to elucidate the regulatory mechanisms of SW on mitochondrial pyroptosis crosstalk in septic ALI.

View Article and Find Full Text PDF

Adenoid cystic carcinoma (ACC) is a lethal salivary gland malignant neoplasm. Lung metastasis is the primary cause of mortality in ACC patients while there is no effective treatment available at present. In this study, a precise and biomimetic nanoplatform, CG/MC/U-M, is designed to combine cuproptosis, gas therapy and immunotherapy against metastatic adenoid cystic carcinoma.

View Article and Find Full Text PDF