98%
921
2 minutes
20
Plant viruses pose a significant threat to global agriculture and require efficient tools for their timely detection. We present AutoPVPrimer, an innovative pipeline that integrates artificial intelligence (AI) and machine learning to accelerate the development of plant virus primers. The pipeline uses Biopython to automatically retrieve different genomic sequences from the NCBI database to increase the robustness of the subsequent primer design. The design_primers_with_tuning module uses a random forest classifier that optimizes parameters and provides flexibility for different experimental conditions. Quality control measures, including the evaluation of poly-X content and melting temperature, increase primer reliability. Unique to AutoPVPrimer is the visualize_primer_dimer module, which supports the visual evaluation of primer dimers-a feature missing in other tools. Primer specificity is validated via primer BLAST, which contributes to the overall efficiency of the pipeline. AutoPVPrimer has been successfully applied to the tomato mosaic virus, proving its adaptability and efficiency. The modular design allows customization by the user and extends the applicability to different plant viruses and experimental scenarios. The pipeline represents a significant advance in primer design and provides researchers with an effective tool to accelerate molecular biology experiments. Future developments aim to extend compatibility and incorporate user feedback to consolidate AutoPVPrimer as an innovative contribution to the bioinformatics toolbox and a promising resource for the advancement of plant virology research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11781739 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0317918 | PLOS |
Chembiochem
September 2025
Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich str. 5/2, 220084, Minsk, Belarus.
The terminal deoxynucleotidyl transferase is a unique polymerase that incorporates nucleotides at the 3'-terminus of single-stranded DNA primers in a template-independent manner. This biological function propels the development of numerous biomedical and bioengineering applications. However, the extensive use of TdT is constrained by its low expression levels in E.
View Article and Find Full Text PDFVet Anim Sci
December 2025
Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China.
Muscovy duck reovirus (MDRV) and Novel duck reovirus (NDRV) are highly infectious diseases of waterfowl, causing significant harm to the global poultry industry. Early detection and diagnosis of NDRV and MDRV in clinical samples are crucial for effectively preventing and controlling these diseases. This study developed a duplex crystal digital PCR (dPCR) assay for the differential detection of NDRV and MDRV.
View Article and Find Full Text PDFEcol Evol
September 2025
MPG Ranch Florence Montana USA.
DNA fecal metabarcoding has revolutionized the field of herbivore diet analyses, offering deeper insight into plant-herbivore interactions and more reliable ecological inferences. However, due to PCR amplification bias, primer selection has a major impact on the validity of these inferences and insights. Using two pooling approaches on four mock communities and a case study examining diets of four large mammalian herbivores (LMH), we evaluated the efficacy of two primer pairs targeting the internal transcribed spacer 2 (ITS2) region: the widely used ITS-S2F/ITS4 pair and the UniPlant F/R pair, designed specifically for DNA metabarcoding.
View Article and Find Full Text PDFAnalyst
September 2025
Research Centre for Analytical Instrumentation, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, P. R. China.
Rapid and efficient screening of foodborne pathogens is crucial for preventing bacterial spread and food poisoning. However, developing a multi-detection method that is easy to operate, offers good stability, and achieves high efficiency remains an enormous challenge. Existing multiplexed nucleic acid detection methods suffer from complex designs, leading to complicated operations, and non-robust sample introduction, causing primer/probe crosstalk and false-positive results.
View Article and Find Full Text PDFTheor Appl Genet
September 2025
State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
Hybrid breeding based on male sterility requires the removal of male parents, which is time- and labor-intensive; however, the use of female sterile male parent can solve this problem. In the offspring of distant hybridization between Brassica oleracea and Brassica napus, we obtained a mutant, 5GH12-279, which not only fails to generate gynoecium (thereby causing female sterility) but also has serrated leaves that could be used as a phenotypic marker in seedling screening. Genetic analysis revealed that this trait was controlled by a single dominant gene.
View Article and Find Full Text PDF