Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A polarization-independent dual-peak narrow-band filter is proposed and demonstrated theoretically and experimentally, which is realized by using a helical long-period fiber grating (HLPG) but with a period small down to tens of micrometers. Unlike those excessively tilted fiber gratings (Ex-TFGs) or the conventional long-period fiber gratings (LPGs) but with a small period down to tens of micrometers where the generated dual-peak pairs (DPPs) are all of the strong polarization-dependence, the DPPs obtained in this study are of the polarization-independent, which is the first time, to the best of our knowledge, that the underlying mechanism for generation of the polarization-independent DPPs in transmission spectrum of the helical small-period fiber grating (HSPFG) has been revealed both theoretically and experimentally.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.550786DOI Listing

Publication Analysis

Top Keywords

fiber grating
12
polarization-independent dual-peak
8
helical small-period
8
small-period fiber
8
theoretically experimentally
8
long-period fiber
8
tens micrometers
8
fiber gratings
8
fiber
5
polarization-independent
4

Similar Publications

Real-time and accurate temperature monitoring has been widely recognized in both academia and industry to ensure battery operation safety. Traditional techniques are generally limited to incomplete information caused by discrete sampling points. Hence, the spiral-serpentine distributed optical fiber sensor (DOFS) layout is presented to realize in-situ full-range temperature measurement.

View Article and Find Full Text PDF

Graphene Oxide-Functionalized Optical Sensor for Label-Free Detection of Breast Cancer Cells.

ACS Appl Nano Mater

August 2025

Department of Physics, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.

Accurate and noninvasive detection of cancer cells is critical for advancing early stage cancer diagnostics and monitoring tumor progression. While manual enumeration methods, such as hemocytometry, remain in use, they suffer from limited sensitivity and scalability. In this article, we report the first feasibility study demonstrating a graphene oxide (GO)-functionalized long-period fiber grating (LPG) sensor for the label-free detection of MCF-7 human breast cancer cell density via secreted cellular byproducts.

View Article and Find Full Text PDF

The increasing depth of coal mine construction has led to complex geological conditions involving high ground stress and elevated groundwater levels, presenting new challenges for water-sealing technologies in rock microfissure grouting. This study investigates ultrafine cement grouting in microfissures through systematic analysis of slurry properties and grouting simulations. Through systematic analysis of ultrafine cement grout performance across water-cement (W/C) ratios, this study establishes optimal injectable mix proportions.

View Article and Find Full Text PDF

To prolong the service life of asphalt pavement and reduce its maintenance cost, a fiber Bragg grating (FBG) sensor encapsulated in carboxylated carbon nanotube (CNT-COOH)-modified gel material suitable for strain monitoring of asphalt pavement was developed. Through tensile and bending tests, the effects of carboxylated carbon nanotubes on the mechanical properties of gel materials under different dosages were evaluated and the optimal dosage of carbon nanotubes was determined. Infrared spectrometer and scanning electron microscopy were used to compare and analyze the infrared spectra and microstructure of carbon nanotubes before and after carboxyl functionalization and modified gel materials.

View Article and Find Full Text PDF

We demonstrate a submillimeter-length single-helix chiral grating embedded in a high-numerical-aperture single-mode fiber (HNA-SMF) for efficient generation of third-order orbital angular momentum (OAM), specifically the OAM mode. This design facilitates enhanced coupling of higher azimuthal modes due to significant perturbations arising from both the geometric effect of the thin-core offset under high-NA conditions and the elasto-optic effect induced by intense helical stress with a small twist pitch. As a result, we achieve an unprecedented device length of 0.

View Article and Find Full Text PDF