98%
921
2 minutes
20
In recent years, unmanned aerial vehicle (UAV) technology has advanced significantly, enabling its widespread use in critical applications such as surveillance, search and rescue, and environmental monitoring. However, planning reliable, safe, and economical paths for UAVs in real-world environments remains a significant challenge. In this paper, we propose a multi-strategy improved red-tailed hawk (IRTH) algorithm for UAV path planning in real environments. First, we enhance the quality of the initial population in the algorithm by using a stochastic reverse learning strategy based on Bernoulli mapping. Then, the quality of the initial population is further improved through a dynamic position update optimization strategy based on stochastic mean fusion, which enhances the exploration capabilities of the algorithm and helps it explore promising solution spaces more effectively. Additionally, we proposed an optimization method for frontier position updates based on a trust domain, which better balances exploration and exploitation. To evaluate the effectiveness of the proposed algorithm, we compare it with 11 other algorithms using the IEEE CEC2017 test set and perform statistical analysis to assess differences. The experimental results demonstrate that the IRTH algorithm yields competitive performance. Finally, to validate its applicability in real-world scenarios, we apply the IRTH algorithm to the UAV path-planning problem in practical environments, achieving improved results and successfully performing path planning for UAVs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759172 | PMC |
http://dx.doi.org/10.3390/biomimetics10010031 | DOI Listing |
Objectives: Waterpipe smoking is increasingly becoming a public health threat due to its appealing features and misperceptions of its harmful effects. Tools assessing waterpipe addiction are essential for understanding waterpipe smokers' behaviors and designing effective smoking cessation plans. This study aimed to develop and validate the Waterpipe Addiction, Craving, and Anticipation Scale (WACAS) and describe the specific patterns and multidimensional aspects of waterpipe smoking behavior.
View Article and Find Full Text PDFFront Big Data
August 2025
MaiNLP, Center for Information and Language Processing, LMU Munich, Munich, Germany.
Predicting career trajectories is a complex yet impactful task, offering significant benefits for personalized career counseling, recruitment optimization, and workforce planning. However, effective career path prediction (CPP) modeling faces challenges including highly variable career trajectories, free-text resume data, and limited publicly available benchmark datasets. In this study, we present a comprehensive comparative evaluation of CPP models-linear projection, multilayer perceptron (MLP), LSTM, and large language models (LLMs)-across multiple input settings and two recently introduced public datasets.
View Article and Find Full Text PDFMed Phys
September 2025
Department of Radiation Oncology, Mayo Clinic in Florida, Jacksonville, Florida, USA.
Background: Dose-driven continuous scanning (DDCS) enhances the efficiency and precision of proton pencil beam delivery by reducing beam pauses inherent in discrete spot scanning (DSS). However, current DDCS optimization studies using traveling salesman problem (TSP) formulations often rely on fixed beam intensity and computationally expensive interpolation for move spot generation, limiting efficiency and methodological robustness.
Purpose: This study introduces a Break Spot-Guided (BSG) method, combined with two acceleration strategies-dose rate skipping and bounding-to optimize beam intensity while minimizing beam delivery time (BDT).
Front Plant Sci
August 2025
Engineering Research Center of Edibleand Medicinal Fungi, Ministry of Education, Jilin Agricultural University Changchun, Changchun, China.
Traditional path planning algorithms often face problems such as local optimum traps and low monitoring efficiency in agricultural UAV operations, making it difficult to meet the operational requirements of complex environments in modern precision agriculture. Therefore, there is an urgent need to develop an intelligent path planning algorithm. To address this issue, this study proposes an improved Informed-RRT* path planning algorithm guided by domain-partitioned A* algorithm.
View Article and Find Full Text PDFData Brief
October 2025
School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, USA.
Unmanned Aerial Vehicles (UAVs) have become a critical focus in robotics research, particularly in the development of autonomous navigation and target-tracking systems. This journal article provides an overview of a multi-year IEEE-hosted drone competition designed to advance UAV autonomy in complex environments. The competition consisted of two primary challenges.
View Article and Find Full Text PDF