98%
921
2 minutes
20
Background: Previous studies reported significant relationships between obesity and pulmonary dysfunction. Here, we investigated genetic alterations in the lung tissues of high fat diet (HFD) induced obese mouse through transcriptomic and molecular analyses.
Methods: Eight-week-old male C57BL/6J mice were fed either a normal chow diet (NCD) or HFD for 12 weeks. We performed RNA sequencing, functional analysis of altered genes using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway data, Database for Annotation, Visualization and Integrated Discovery (DAVID) analysis, protein network analysis, quantitative real-time polymerase chain reaction, and Western blotting.
Results: We performed RNA sequencing analysis in the lung tissue of HFD mice. GO and KEGG pathway data presented higher expressions of genes related to lung fibrosis, and the changes of several pathways including regulation of nitrogen compound metabolic process, G protein-coupled receptor signaling, cancer pathway, and small cell lung cancer pathway. DAVID analysis and protein network analysis showed the changes of vascular endothelial growth factor, hypoxia-inducible factor-1 and rat sarcoma virus signaling related to vascular permeability, and protein network of MYC proto-oncogene gene related to cancer. In addition, we found increased protein and mRNA levels of the growth/differentiation factor 15 and alpha smooth muscle actin genes related to lung fibrosis in lung tissue of HFD mice.
Conclusions: HFD contributes to an increased risk of lung fibrosis and lung cancer. Thus, we propose that the genetic modulation and the molecular regulation of target pathways are essential to suppress pulmonary fibrosis in obese patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11736590 | PMC |
http://dx.doi.org/10.21037/tlcr-24-659 | DOI Listing |
Nano Lett
September 2025
State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
An optimal administration approach is critical for effective mRNA delivery and treatment. Nebulizer inhalation offers a mild, convenient, and noninvasive strategy with high translational potential but primarily focused on lung delivery. In this study, we found that surface charges influence tissue targeting of mRNA lipid nanoparticle (mRNA-LNP) postnebulization.
View Article and Find Full Text PDFToxicol Mech Methods
September 2025
Lung Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
Mechanistic studies have been suggested that toxic effects of bleomycin are generally attributed to formation of free radicals, mitochondria damages, oxidative stress and inflammation. For this purpose, we explored the direct exposure of bleomycin and protective effects of the betanin and vanillic acid separately against its possible toxicity in rat lung isolated mitochondria. Various mitochondrial toxicity parameters were evaluated including; succinate dehydrogenases (SDH) activity, reactive oxygen species (ROS) formation, mitochondrial swelling, mitochondrial membrane potential (MMP) collapse, malondialdehyde (MDA) and glutathione disulfide (GSSG) levels.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
August 2025
Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
Objectives: To investigate the effect of (HP) on bleomycin (BLM)-induced pulmonary fibrosis in mice and on TGF-β1-induced human fetal lung fibroblasts (HFL1).
Methods: Thirty male C57BL/6 mice were randomly divided into control group, BLM-induced pulmonary fibrosis model group, low- and high-dose HP treatment groups (3 and 21 mg/kg, respectively), and 300 mg/kg pirfenidone (positive control) group. The effects of drug treatment for 21 days were assessed by examining respiratory function, lung histopathology, and expression of fibrosis markers in the lung tissues of the mouse models.
Ther Adv Respir Dis
September 2025
Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
Background: Hermansky-Pudlak syndrome (HPS) is a rare disease characterized by excessive bleeding, oculocutaneous albinism, and pulmonary fibrosis (PF). However, few studies have systematically summarized the clinical characteristics of HPS.
Objectives: To summarize the clinical characteristics, risk factors of PF, radiological and pathological presentations, and prognostic factors in patients with HPS.
Korean J Physiol Pharmacol
September 2025
Department of Endocrinology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China.
The progression of renal fibrosis is difficult to reverse, and Poria cocos, one of the main components of Wenyang Zhenshuai Granules, has been shown to be crucial to the development of the epithelial-mesenchymal transition (EMT). This study aimed to examine the molecular mechanism by which Poricoic Acid A (PAA) inhibited the advancement of EMT in renal tubular epithelial (RTE) cells. The protein levels of sprouty RTK signaling antagonist 2 (SPRY2) extracellular regulated protein kinases (ERK), and p-ERK were measured.
View Article and Find Full Text PDF