Publications by authors named "Danbi Jo"

Objectives: Hepatic encephalopathy (HE) is a neuropsychiatric disorder associated with cirrhosis and chronic liver disease primarily driven by ammonia (NH3) toxicity, which leads to neuroinflammation and cognitive deficits. Recent studies have identified olfactory dysfunction as a potential early indicator of HE, linked to ammonia-induced neurotoxicity in the brain.

Methods: After confirming physiological alterations in olfactory cells induced by ammonia, we assessed gene expression changes in olfactory bulbs of bile duct ligation (BDL) mice as an HE mouse model.

View Article and Find Full Text PDF

Sinonasal squamous cell carcinoma (SNSCC) is a rare, aggressive malignancy with poor clinical outcomes. Metabolic syndrome components, including obesity-associated hyperleptinemia, may promote tumor progression. Leptin is an adipokine that is elevated in obesity and activates oncogenic pathways that drive cancer cell proliferation.

View Article and Find Full Text PDF

Metabolic imbalance contributes to cognitive impairment, anxiety, depressive behavior, and impaired olfactory perception. Recent studies have focused on olfactory dysfunction in patients with obesity and diabetes accompanied by cognitive dysfunction, considering that the synaptic signal from the olfactory bulb is directly transmitted to memory consolidation-related brain regions. This study investigated transcriptomic changes in the olfactory bulb in high-fat diet (HFD)-fed mice compared to that in normal-diet-fed mice.

View Article and Find Full Text PDF

Background: Previous studies reported significant relationships between obesity and pulmonary dysfunction. Here, we investigated genetic alterations in the lung tissues of high fat diet (HFD) induced obese mouse through transcriptomic and molecular analyses.

Methods: Eight-week-old male C57BL/6J mice were fed either a normal chow diet (NCD) or HFD for 12 weeks.

View Article and Find Full Text PDF

Obesity is a prevalent metabolic disorder linked to insulin resistance, hyperglycemia, increased adiposity, chronic inflammation, and cognitive dysfunction. Recent research has focused on developing therapeutic strategies to mitigate cognitive impairment associated with obesity. Insulin growth factor-1 (IGF1) deficiency is linked to insulin resistance, glucose intolerance, and the progression of obesity-related central nervous system (CNS) disorders.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how the gut microbiota affects adipo-myokine levels in hepatic encephalopathy (HE) using a mouse model with bile duct ligation (BDL).
  • BDL mice exhibited significant weight loss, reduced food intake, liver damage, and changes in gut microbial communities compared to control mice.
  • Specific changes in gut microbes were linked to higher adipo-myokine levels in the serum, indicating a possible relationship between gut health and metabolic markers in HE.
View Article and Find Full Text PDF

Oligonol, a low-molecular-weight polyphenol derived from lychee fruit, is well recognized for its antioxidant properties, blood glucose regulation, and fat mass reduction capability. However, its effect on the central nervous system remains unclear. Here, we investigated the effects of oligonol on brain in a high-fat diet (HFD) fed mouse model, and SH-SY5Y neuronal cells and primary cultured cortical neuron under insulin resistance conditions.

View Article and Find Full Text PDF

The prevalence of metabolic syndrome caused by diets containing excessive fatty acids is increasing worldwide. Patients with metabolic syndrome exhibit abnormal lipid profiles, chronic inflammation, increased levels of saturated fatty acids, impaired insulin sensitivity, excessive fat accumulation, and neuropathological issues such as memory deficits. In particular, palmitic acid (PA) in saturated fatty acids aggravates inflammation, insulin resistance, impaired glucose tolerance, and synaptic failure.

View Article and Find Full Text PDF

Alzheimer's disease (AD) stands as the most prevalent neurodegenerative disorder, characterized by a multitude of pathological manifestations, prominently marked by the aggregation of amyloid beta. Recent investigations have revealed a compelling association between excessive adiposity and glial activation, further correlating with cognitive impairments. Additionally, alterations in levels of insulin-like growth factor 1 (IGF-1) have been reported in individuals with metabolic conditions accompanied by memory dysfunction.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a common neurodegenerative disease worldwide and is accompanied by memory deficits, personality changes, anxiety, depression, and social difficulties. For treatment of AD, many researchers have attempted to find medicinal resources with high effectiveness and without side effects. Oligonol is a low molecular weight polypeptide derived from lychee fruit extract.

View Article and Find Full Text PDF

Background: Hepatic encephalopathy-induced hyperammonemia alters astrocytic glutamate metabolism in the brain, which is involved in cognitive decline. To identify specific therapeutic strategies for the treatment of hepatic encephalopathy, various molecular signaling studies, such as non-coding RNA functional study, have been conducted. However, despite several reports of circular RNAs (circRNAs) in the brain, few studies of circRNAs in hepatic encephalopathy-induced neuropathophysiological diseases have been conducted.

View Article and Find Full Text PDF

Hepatic encephalopathy (HE) associated with liver failure is accompanied by hyperammonemia, severe inflammation, depression, anxiety, and memory deficits as well as liver injury. Recent studies have focused on the liver-brain-inflammation axis to identify a therapeutic solution for patients with HE. Lipocalin-2 is an inflammation-related glycoprotein that is secreted by various organs and is involved in cellular mechanisms including iron homeostasis, glucose metabolism, cell death, neurite outgrowth, and neurogenesis.

View Article and Find Full Text PDF

Recent evidence indicates that the pathogenesis of neurodegenerative diseases, including Alzheimer's disease, is associated with metabolic disorders such as diabetes and obesity. Various circular RNAs (circRNAs) have been found in brain tissues and recent studies have suggested that circRNAs are related to neuropathological mechanisms in the brain. However, there is a lack of interest in the involvement of circRNAs in metabolic imbalance-related neuropathological problems until now.

View Article and Find Full Text PDF

Thyroid hormone (TH) contributes to multiple cellular mechanisms in the liver, muscle cells, adipose tissue, and brain, etc. In particular, the liver is an important organ in TH metabolism for the conversion of thyronine (T4) into triiodothyronine (T3) by the deiodinase enzyme. TH levels were significantly decreased and thyroid-stimulating hormone (TSH) levels were significantly increased in patients with liver failure compared with normal subjects.

View Article and Find Full Text PDF

Background: Hyperammonemia can result in various neuropathologies, including sleep disturbance, memory loss, and motor dysfunction in hepatic encephalopathy. Long noncoding RNA (lncRNA) as a group of noncoding RNA longer than 200 nucleotides is emerging as a promising therapeutic target to treat diverse diseases. Although lncRNAs have been linked to the pathogenesis of various diseases, their function in hepatic encephalopathy has not yet been elucidated.

View Article and Find Full Text PDF

Sarcopenia characterized by reduced skeletal muscle mass and decreased muscle strength is increasing in prevalence globally. The pathophysiology of sarcopenia is related to various factors including hormonal imbalance, increased intracellular oxidative stress, reduction of food intake, advanced age, low body mass index, and low physical activity. Recently, sarcopenia has been reported to be associated with cognitive decline, and the common risk factors between sarcopenia and memory loss were observed in cohort studies.

View Article and Find Full Text PDF

Depression is the most prevalent psychiatric disorder experienced by the world's population. Mechanisms associated with depression-like behavior have not been fully investigated. Among the therapeutic solution for depression, exercise is considered an important regulator attenuating depressive neuropathology.

View Article and Find Full Text PDF

Metabolic syndromes, including obesity, cause neuropathophysiological changes in the brain, resulting in cognitive deficits. Only a few studies explored the contribution of non-coding genes in these pathophysiologies. Recently, we identified obesity-linked circular RNAs (circRNA) by analyzing the brain cortices of high-fat-fed obese mice.

View Article and Find Full Text PDF

Aging occurs along with multiple pathological problems in various organs. The aged brain, especially, shows a reduction in brain mass, neuronal cell death, energy dysregulation, and memory loss. Brain aging is influenced by altered metabolites both in the systemic blood circulation and the central nervous system (CNS).

View Article and Find Full Text PDF

Glucagon like peptide 1 (GLP-1) is an incretin hormone produced by the gut and brain, and is currently being used as a therapeutic drug for type 2 diabetes and obesity, suggesting that it regulates abnormal appetite patterns, and ameliorates impaired glucose metabolism. Many researchers have demonstrated that GLP-1 agonists and GLP-1 receptor agonists exert neuroprotective effects against brain damage. Palmitic acid (PA) is a saturated fatty acid, and increases the risk of neuroinflammation, lipotoxicity, impaired glucose metabolism, and cognitive decline.

View Article and Find Full Text PDF

Obesity, characterized by excessive fat mass, has been emerging as a major global epidemic and contributes to the increased risk of morbidity around the world. Thus, the necessity to find effective therapy and specific regulatory mechanisms is increasing for controlling obesity. Lately, many researchers have been interested in the linkage between obesity and adipokines/myokines, particularly adiponectin and brain-derived neurotrophic factor (BDNF).

View Article and Find Full Text PDF

Background: For the bone-specific imaging, a structure-inherent targeting of bone tissue recently has been reported a new strategy based on incorporation of targeting moieties into the chemical structure of near-infrared (NIR) contrast agents, while conventional methods require covalent conjugation of bone-targeting ligands to NIR contrast agents. This will be a new approach for bone-targeted imaging by using the bifunctional NIR contrast agents.

Methods: The goal of this review is to provide an overview of the recent advances in optical imaging of bone tissue, highlighting the structure-inherent targeting by developing NIR contrast agents without the need for a bone-targeting ligand such as bisphosphonates.

View Article and Find Full Text PDF

Evans blue dye (EBD) is the most common indicator to analyze the extent of blood-brain barrier (BBB) breakdown in several neurological disease models. However, the high-dose of EBD (51.9 mg/kg) is usually required for visualization of blue color by the human eye that brings potential safety issues.

View Article and Find Full Text PDF

Currently available chemotherapy is associated with serious side effects, and therefore novel drug delivery systems (DDSs) are required to specifically deliver anticancer drugs to targeted sites. In this study, we evaluated the feasibility of visible light-cured glycol chitosan (GC) hydrogels with controlled release of doxorubicin⋅hydrochloride (DOX⋅HCl) as local DDSs for effective cancer therapy in vivo. The storage modulus of the hydrogel precursor solutions was increased as a function of visible light irradiation time.

View Article and Find Full Text PDF

Early detection and differential diagnosis of breast microcalcifications are of significant importance in effective treatment of early breast cancer, because mineral composition of breast calcification is directly associated with different pathological states. However, applying image-based modalities for component identification in breast calcification remains challenging, because no calcification-specific contrast agent is available to distinguish between benign and malignant (type I and type II, respectively) calcifications of breast lesions. In this study, real-time near-infrared (NIR) fluorescence imaging of breast microcalcifications using targeted NIR fluorophores in combination with dual-channel NIR fluorescence imaging system is reported.

View Article and Find Full Text PDF