98%
921
2 minutes
20
Efficient and safe carriers of genetic material are crucial for advancing gene therapy. Three new series of cationic dendritic nanocarriers based on a carbosilane scaffold, differentiated by peripheral modifications: saccharide (CS-glyco), amine (CS-N), and phosphonium dendrimers (CS-P) were designed for binding, protecting, and releasing polyanionic compounds like therapeutic siRNA. Besides introducing synthetic methodology, this study brings a unique direct interstructural comparison of 16 dendritic nanovector's characteristics, addressing a gap in typical research that focuses on uniform structural types. The study evaluates the dendrimer's cytotoxicity, biophysical properties, and complexation capabilities in comparison with widely used PAMAM dendrimers. CS-glyco and PAMAMs were significantly less toxic to MCF-7 and THP-1 cell lines than were CS-N and CS-P, despite having the same peripheral charge density. Notably, CS-glyco maintained biocompatibility comparable to analogous neutral CS glycodendrimers, underscoring the exceptional capability of sugar coating to reduce toxicity. Dendriplexes formed from these nanocarriers protected siRNA from RNase degradation and facilitated its release in the presence of heparin, highlighting its potential in gene delivery applications. The study provides a background for future in-depth investigations into the introduced dendritic nanocarriers, which show significant potential for advancing drug delivery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740622 | PMC |
http://dx.doi.org/10.1021/acsomega.4c08314 | DOI Listing |
Recent Pat Anticancer Drug Discov
September 2025
Department of Biophysics, Faculty of Applied Health Sciences, October 6 University, Egypt.
Introduction: Leukemia and radiation-induced liver toxicity are significant health challenges requiring effective therapeutic strategies. This study aimed to evaluate the therapeutic efficacy and radiosensitizing effects of Diosgenin-loaded silver nanoparticles (Dio-AgNPs) in ENU-induced leukemic mice, with a focus on their dual role in mitigating leukemia progression and γ-irradiation-induced hepatotoxicity.
Methods: Dio-AgNPs were synthesized and characterized using TEM, UV-Vis spectroscopy, FT-IR spectroscopy, and encapsulation efficiency analysis.
J Med Chem
September 2025
UMR 1100, Research Center for Respiratory Diseases (CEPR), Team Proteolytic enzymes and their pharmacological targeting in lung diseases, University of Tours, Inserm, F-37032 Tours, France.
The prognosis of human epidermal growth factor receptor 2 (HER2)-positive breast cancer has significantly improved with the advent of anti-HER2 therapies, especially antibody-drug conjugates (ADCs). In this field, ADCs, like trastuzumab deruxtecan (T-DXd), using camptothecin analogs, represent a promising strategy. However, T-DXd can induce resistance and serious adverse effects, potentially driven by a non-specific Fcγ receptor-mediated endocytosis.
View Article and Find Full Text PDFToxicol In Vitro
September 2025
Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 3 Institutskaya St., 142290 Pushchino, Russia.
Curcumin is a natural bioactive substance with promising biomedical applications. However, the low solubility and stability of curcumin significantly limit its potential use. The development of nanoformulations of curcumin makes it possible to circumvent the above limitations.
View Article and Find Full Text PDFACS Nano
September 2025
Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
Despite the success of chimeric antigen receptor-T (CAR-T) in hematological malignancies, challenges persist, including limited efficacy in solid tumors, on-off tumor toxicity, and CAR-T cell persistence. Cellular mechanics profoundly influence cell behavior and function, yet the biophysical aspects of CAR-T cells remain underexplored. Here, we investigate various CAR molecules incorporating CD19 or CD123 recognition domains.
View Article and Find Full Text PDFJ Med Chem
September 2025
Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou450001, China.
Cisplatin resistance remains a major clinical challenge in cancer therapy, often driven by the upregulation of DNA repair pathways. Here, we present a dual-functional nanotherapeutic system (HFn-NERiP-Pt(IV)) combining a glutathione-responsive PROTAC (NERiP) with a ferritin nanocarrier for targeted ERCC1/XPF degradation and enhanced platinum delivery. NERiP selectively degrades ERCC1/XPF upon release in reductive tumor environments, suppressing nucleotide excision repair and enhancing platinum cytotoxicity.
View Article and Find Full Text PDF