Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fluorescence molecular imaging aims to enhance clarity in the region of interest, particularly in the near-infrared IIb window (NIR-IIb, 1500-1700 nm). To achieve this, we developed a novel small-molecule dye, named , based on classic cyanine dyes (heptamethine or pentamethine is essential for wavelengths beyond 1000 nm). By reducing excessive polymethine to a single methine and disrupting symmetry to form an asymmetric donor-π-acceptor (D-π-A) architecture, we enhanced the donor's electron-donating capability, yielding emission at 1088 nm. exhibits superior properties, including excellent chemo- and photostability, resistance against solvatochromism-caused quenching, and antiaggregation in aqueous solution. With a large Stokes shift (241 nm) and high brightness (321 M cm), enables high-performance imaging of the lymphatic system, intestinal vessels, whole-body angiography, and cerebral and hindlimb microvasculature in NIR-IIb. This molecular design strategy offers a promising platform for advancing in vivo biophotonics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.4c02866DOI Listing

Publication Analysis

Top Keywords

donor engineering
4
engineering stable
4
stable molecular
4
molecular dye
4
dye bioimaging
4
bioimaging nir-iib
4
nir-iib window
4
window fluorescence
4
fluorescence molecular
4
molecular imaging
4

Similar Publications

Low-potential pyrene-coordinated MOFs and CoSOH nanosheets: An electrochemiluminescence energy resonance transfer system for aflatoxin B1 detection.

Anal Chim Acta

November 2025

The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China; Center of Self-Propelled Nanotechnologies, Suzhou Industrial Park Institute of Services Outsourcing, Suzhou, 215123, PR China

Background: Of the mycotoxins, aflatoxin is the most significant. The detection of aflatoxin B1 (AFB1) is crucial for ensuring food safety, as this highly carcinogenic toxin readily contaminates crops such as grains and nuts, and timely detection can effectively prevent associated health risks. The selection of luminophores is of paramount importance in the detection of ECL (electrochemiluminescence).

View Article and Find Full Text PDF

A FRET ratiometric fluorescent probe for detection of bisulfite in food: Insights into food quality and preservation.

Anal Chim Acta

November 2025

School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, China. Electronic address:

Background: Bisulfite (HSO) plays crucial roles in food safety and physiological health. In the food industry, sulfur dioxide (SO) and its derivative bisulfite (HSO) are extensively employed as preservatives and bleaching agents. Nonetheless, overconsumption of bisulfite can present health hazards like asthma and potentially cancer.

View Article and Find Full Text PDF

Background: Sulfur dioxide (SO) is recognized as a major atmospheric pollutant and its excessive emissions can pose a great threat to the environment, flora and fauna, and human health. Long-term exposure to excessive SO can cause chronic poisoning, leading to neurological disorders and cardiovascular diseases. However, there are two sides to everything.

View Article and Find Full Text PDF

Proper alignment between donor and recipient cartilage in osteochondral allograft transplantation supports tissue integration and the formation of a stable articulating surface. This study evaluated the use of patient-specific 3D-printed drill guides to improve alignment in an ovine model of osteochondral allograft transplantation when used in place of a free-hand drilling technique. Fourteen female Arcott sheep underwent bilateral osteochondral allograft transplantation.

View Article and Find Full Text PDF

The timely release of chemical messengers is a crucial step in cell-to-cell communication. Does this release occur as a passive diffusion from the donor membrane or it is actively regulated? A series of studies indicated that chemical messengers' secretion is "sub-quantal". This mode of secretion demands a strongly regulated release mechanism and calls for a thorough characterization of the release sites.

View Article and Find Full Text PDF