Ecological risk assessment for BDE-47 in marine environment based on species sensitivity distribution method.

Mar Environ Res

State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266071, China;

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

BDE-47 is the most abundant and toxic congener in the marine environment. Assessing the ecological risk of BDE-47 in seawater is of great importance to protect the marine species. However, the ecological risks of BDE-47 on marine species is still limited. In the present study, the hazardous concentrations for 5 % of species (HC) values of BDE-47 were derived by species sensitivity distributions (SSD), the short-term water quality criteria (SWQC) and long-term water quality criteria (LWQC) were acquired from HC. Moreover, the marine ecological risk of BDE-47 was assessed by the risk quotient (RQ) method in the coastal area of China. The SWQC and LWQC were 1.06 μg/L and 0.61 μg/L, respectively. According to published literature, the concentrations of BDE-47 ranged from undetected to 9.06 ng/L, BDE-47 has no risk to marine species in most coastal areas, but might show low risk for a long exposure time in the coastal mariculture area of China. This study provides a new approach for the derivation of the WQC and the ecological risk assessment of BDE-47, which is essential for the protection of marine species and provides guidance to manage the concentration of BDE-47 for administrative department.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marenvres.2025.106967DOI Listing

Publication Analysis

Top Keywords

ecological risk
16
marine species
16
bde-47
10
risk assessment
8
assessment bde-47
8
bde-47 marine
8
marine environment
8
species sensitivity
8
risk bde-47
8
water quality
8

Similar Publications

Degradation and ecological risk of a novel neonicotinoid insecticide imidaclothiz in aquatic environments: Kinetics, photodegradation and hydrolysis pathways, mechanism and metabolites toxicity evaluation.

Pestic Biochem Physiol

November 2025

Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China; Institute of Ecological Environmental Protection and Pollution Remediation Engineering, Anhui Agricultural U

Neonicotinoid insecticides residuals pose a threat to aquatic ecosystems and human health. Imidaclothiz, as a novel neonicotinoid pesticide, the metabolic mechanisms in aquatic environments was unclear. This study investigated the degradation characteristics of imidaclothiz in both pure and actual water, and analyzed the photodegradation and hydrolysis metabolites of imidaclothiz in aquatic environments and assessed their toxicity.

View Article and Find Full Text PDF

Adsorption-desorption behavior of difenoconazole onto soils: Kinetics, isotherms, and influencing factors.

Pestic Biochem Physiol

November 2025

National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, 61 Daizong Road, Tai'an 271018, PR China. Electronic address: wj

Difenoconazole (DFC) is a commonly used triazole fungicide known for its high efficiency and environmental persistence. A thorough understanding of its environmental behavior, particularly sorption in soil, is critical to obtain a comprehensive assessment of the ecological risk of DFC. In this study, three soils with distinct physicochemical properties (brown soil, cinnamon soil, and fluvo-aquic soil) were used to elucidate the adsorption mechanisms of DFC on soil.

View Article and Find Full Text PDF

Genotype-dependent apoptotic responses to cyantraniliprole exposure in Zebrafish (Danio rerio): Insights from statistical modeling and molecular validation.

Ecotoxicol Environ Saf

September 2025

Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry Disasters, School of Tropical Agriculture and Forestry, Hainan University, DanZhou 571737, China. Electronic address:

Cyantraniliprole is a widely used insecticide in rice that could induce cellular damage. However, the mechanism of cyantraniliprole induced cell apoptosis was not clear. The Split-Split-Plot analysis revealed that the expression of apoptosis-related genes was significantly impacted by exposure time, concentration, genotype, and their complex interactions.

View Article and Find Full Text PDF

Adsorption behavior and neurotoxic synergy of thallium and polystyrene microplastics in Caenorhabditis elegans.

Aquat Toxicol

September 2025

State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China. Electronic address:

Microplastics (MPs) have emerged as ubiquitous environmental contaminants, while thallium (Tl), a highly toxic metalloid, is gaining attention as a novel pollutant due to its increasing release from electronic waste and mining activities. These pollutants frequently coexist in aquatic environments; however, their combined effects at environmentally relevant concentrations remain poorly understood. In this study, the adsorption behavior and joint neurotoxicity of polystyrene (PS) microplastics and Tl were systematically evaluated using Caenorhabditis elegans as a model organism.

View Article and Find Full Text PDF

Key factors affecting heavy metal contamination of mangrove sediments in the Zhangjiang Estuary: Implications for environmental management.

Mar Pollut Bull

September 2025

School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen, 361021, China; Xiamen Key Laboratory of Membrane Research and Application, Xiamen, 361024, China. Electronic address:

With the rapid economic development of coastal cities, the discharge of significant amounts of heavy metal pollutants has posed a severe threat to mangrove forests. However, the potential sources of these metals and the health risks they pose remain poorly understood. This study analyzed 14 heavy metals in mangrove and river sediments of Zhangjiang Estuary, southeastern China.

View Article and Find Full Text PDF