NIRFluor: A Deep Learning Platform for Rapid Screening of Small Molecule Near-Infrared Fluorophores with Desired Optical Properties.

Anal Chem

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Small molecule near-infrared (NIR) fluorophores play a critical role in disease diagnosis and early detection of various markers in living organisms. To accelerate their development and design, a deep learning platform, NIRFluor, was established to rapidly screen small molecule NIR fluorophores with the desired optical properties. The core component of NIRFluor is a state-of-the-art deep learning model trained on 5179 experimental big data. First, novel hybrid fingerprints including Morgan fingerprints, physicochemical properties, and solvent properties were proposed. Then, a powerful deep learning model, multitask fingerprint-enhanced graph convolutional network (MT-FinGCN), was designed, which combines fingerprint information and molecule graph structure information to achieve accurate prediction of six properties (absorption wavelength, emission wavelength, Stokes shift, extinction coefficient, photoluminescence quantum yield, and lifetime) of different small molecule NIR fluorophores in different solvents. Furthermore, the "black-box" of the GCN model was opened through interpretability studies. Finally, the well-trained models were placed on the web platform NIRFluor for free use (https://nirfluor.aicbsc.com).

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.4c01953DOI Listing

Publication Analysis

Top Keywords

deep learning
16
small molecule
16
nir fluorophores
12
learning platform
8
molecule near-infrared
8
fluorophores desired
8
desired optical
8
optical properties
8
platform nirfluor
8
molecule nir
8

Similar Publications

Multi-region ultrasound-based deep learning for post-neoadjuvant therapy axillary decision support in breast cancer.

EBioMedicine

September 2025

Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, PR China; Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, 264000, PR China. Electronic address:

View Article and Find Full Text PDF

Purpose: The present study aimed to develop a noninvasive predictive framework that integrates clinical data, conventional radiomics, habitat imaging, and deep learning for the preoperative stratification of MGMT gene promoter methylation in glioma.

Materials And Methods: This retrospective study included 410 patients from the University of California, San Francisco, USA, and 102 patients from our hospital. Seven models were constructed using preoperative contrast-enhanced T1-weighted MRI with gadobenate dimeglumine as the contrast agent.

View Article and Find Full Text PDF

Designing Buchwald-Hartwig Reaction Graph for Yield Prediction.

J Org Chem

September 2025

State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, P. R. China.

The Buchwald-Hartwig (B-H) reaction graph, a novel graph for deep learning models, is designed to simulate the interactions among multiple chemical components in the B-H reaction by representing each reactant as an individual node within a custom-designed reaction graph, thereby capturing both single-molecule and intermolecular relationship features. Trained on a high-throughput B-H reaction data set, B-H Reaction Graph Neural Network (BH-RGNN) achieves near-state-of-the-art performance with an score of 0.971 while maintaining low computational costs.

View Article and Find Full Text PDF

Background: Circumcision is a widely practiced procedure with cultural and medical significance. However, certain penile abnormalities-such as hypospadias or webbed penis-may contraindicate the procedure and require specialized care. In low-resource settings, limited access to pediatric urologists often leads to missed or delayed diagnoses.

View Article and Find Full Text PDF

This study aimed to develop a deep-learning model for the automatic classification of mandibular fractures using panoramic radiographs. A pretrained convolutional neural network (CNN) was used to classify fractures based on a novel, clinically relevant classification system. The dataset comprised 800 panoramic radiographs obtained from patients with facial trauma.

View Article and Find Full Text PDF