Endothelial cell (EC)-specific Ctgf/Ccn2 expression increases EC reprogramming and atherosclerosis.

Matrix Biol

Department of Surgery, Emory University, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Research Services, Atlanta VA Medical Center, Decatur, GA, USA. Electronic address:

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Arterial endothelial cells (ECs) reside in a complex biomechanical environment. ECs sense and respond to wall shear stress. Low and oscillatory wall shear stress is characteristic of disturbed flow and commonly found at arterial bifurcations and around atherosclerotic plaques. Disturbed flow is pro-inflammatory to ECs. Arteries also stiffen with aging and/or the onset of vascular disease. ECs sense and respond to stiffening in a pro-fibrotic manner. Thus, flow and stiffening disturbances elicit EC responses that promote pathologic arterial remodeling. However, the pathways elicited by ECs under pathologic stiffening and disturbed flow are not well understood. The objective of this work was to discover and test the modifiability of key pathways in ECs. To do this we used the partial carotid ligation model to impose disturbed flow onto the precociously stiffened fibulin-5 knockout (Fbln5) mouse carotid arteries. Biomechanical testing demonstrated that Fbln5 arteries under disturbed flow approximate the stiffness ratio of diseased human arteries, and the ECs in these Fbln5 arteries underwent rapid reprogramming via endothelial to mesenchymal transition (EndMT). Under atherogenic conditions, disturbed flow Fbln5 arteries developed more vulnerable plaques than the wild type (WT) mouse arteries. Connective tissue growth factor/cellular communication network factor 2 (Ctgf/Ccn2) was upregulated in vivo in ECs with aging, with stiffening in the Fbln5 arteries, and increased again by disturbed flow under stiffened conditions, supporting CTGF as a key biomarker for flow and stiffening. This was validated by immunohistochemistry, which demonstrated increased CTGF deposition in areas of disturbed flow in patient carotid endarterectomy and peripheral artery disease (PAD) specimens. Finally, to test the role of CTGF in regulating and combining these processes, we created an EC-specific Ctgf knockout (Ctgf). We identified that carotid arteries under disturbed flow and atherogenic conditions in male Ctgf, but not female, mice had decreased plaque area compared to WT control mice. We then tested the Ctgf expression in the carotid endothelium exposed to disturbed or stable flow in WT and Fbln5 mice. Here we found that under disturbed flow male mice had greater Ctgf expression than female mice. This work demonstrates that stiffened + disturbed flow conditions drive EC reprogramming, that CTGF is increased by these conditions, and that this increase is more prominent in male carotid arteries. Future exploration of sex-based differences in these fibrotic pathways are warranted to develop targeted therapeutics to limit pathologic arterial remodeling under pathologically stiffened + disturbed flow environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11875889PMC
http://dx.doi.org/10.1016/j.matbio.2025.01.003DOI Listing

Publication Analysis

Top Keywords

disturbed flow
48
fbln5 arteries
16
flow
15
disturbed
13
carotid arteries
12
arteries
10
ctgf
9
ecs
8
ecs sense
8
sense respond
8

Similar Publications

Introduction:  Endothelial dysfunction has been reported in rheumatoid arthritis (RA) patients without classical cardiovascular risk factors, but findings remain inconsistent.

Objectives:  To assess whether endothelial function is impaired in RA with moderate inflammatory burden in the absence of established cardiovascular risk factors.

Patients And Methods:  This cross-sectional study was conducted in 64 patients with RA without classical CV risk factors and 60 healthy age- and sex-matched controls.

View Article and Find Full Text PDF

Objectives: Left ventricular vortex dynamics play a crucial role in cardiac function but are significantly altered by mitral valve diseases or surgical interventions. Such hemodynamic changes may lead to maladaptive intracardiac vortices, potentially triggering pathways associated with progressive left ventricular remodeling and thrombosis. This study assessed left ventricular hemodynamics under both physiological and pathological conditions using a biohybrid in vitro platform, aiming to analyze the impact of these conditions on cardiac function.

View Article and Find Full Text PDF

Clinical, Immunological, and Vesicular Markers in Sarcopenia and Presarcopenia.

Front Biosci (Landmark Ed)

August 2025

Division of Biochemistry and Molecular Biology, Siberian State Medical University, Ministry of Health of the Russian Federation, 634050 Tomsk, Russia.

Background: Sarcopenia is a complex, multifactorial condition characterized by progressive loss of muscle mass, strength, and function. Despite growing awareness, the early diagnosis and pathophysiological characterization of this condition remain challenging due to the lack of integrative biomarkers.

Objective: This study aimed to conduct a comprehensive multilevel profiling of clinical parameters, immune cell phenotypes, extracellular vesicle (EV) signatures, and biochemical markers to elucidate biological gradients associated with different stages of sarcopenia.

View Article and Find Full Text PDF

Background: Carotid web (CaW) is a rare fibromuscular dysplasia lesion at the carotid bifurcation linked to thromboembolic events in young patients. CaW-induced hemodynamic disturbances contribute to thrombosis, but the impact of CaW morphology on long-term thrombotic risk remains unclear.

Method: This study developed three-dimensional numerical models based on patient-specific carotid artery anatomy with CaW angles of 30°, 60°, and 90° (models A, B, and C).

View Article and Find Full Text PDF

The role of lipid metabolism disorder in the progression and treatment of ocular vascular diseases.

Surv Ophthalmol

September 2025

Department of Ophthalmology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Weifang 261041, China.

Lipid metabolism plays a critical role in maintaining normal physiological functions and is strongly linked to the pathogenesis of ocular vascular diseases. This review examines how disorders of lipid metabolism drive progression in ocular vascular diseases, including diabetic retinopathy, age-related macular degeneration, retinal vascular occlusive diseases, and retinopathy of prematurity. These disorders are classified as a related group due to their common feature of impaired ocular vascularization.

View Article and Find Full Text PDF