98%
921
2 minutes
20
The study aimed to identify differences in the biochemical composition of corneal stroma lenses across varying degrees of myopia using Raman spectrum characteristics. Corneal stroma lens samples from 38 patients who underwent small incision lens extraction (SMILE) surgery, were categorized into low (n = 9, spherical power -3.00D), moderate (n = 23, spherical power < -3.00D and > -6.00D), and high myopia (n = 6, spherical power ≦-6.00D) groups. A custom-built microscopic confocal Raman system (MCRS) was used to collect Raman spectra, which were processed by smoothing, denoising, and baseline calibrating to refine raw data. Independent sample t-tests were used to analyze spectral feature peaks among sample types. Significant differences ( < 0.001) were found in multiple Raman spectral characteristic peaks (854 cm, 937 cm, 1002 cm, 1243 cm, 1448 cm, and 2940 cm) between low and high myopia samples, particularly at 2940 cm. Differences were also found between low and moderate, and moderate and high myopia samples, although fewer than between low and high myopia samples. The three-classification model, particularly with PLS-KNN training, exhibited superior discriminative performance with accuracy rates of 95%. Similarly, the two-classification model for low and high myopia achieved high accuracy with PLS-KNN (94.4%) compared to PCA-KNN (93.3%). PLS dimensionality reduction slightly outperformed PCA, enhancing classification accuracy. In addition, in both reduction methods, the KNN algorithm demonstrated the highest accuracy and performance. The optimal PLS-KNN classification model showed AUC values of 0.99, 0.98, and 1.00 for ROC curves corresponding to low, moderate, and high myopia, respectively. Classification accuracy rates were 89.7% and 96.9%, and 100% for low and high myopia, respectively. For the two-classification model, accuracy reached 94.4% with an AUC of 0.98, indicating strong performance in distinguishing between high and low myopic corneal stroma. We found significant biochemical differences such as collagen, lipids, and nucleic acids in corneal stroma lenses across varying degrees of myopia, suggesting that Raman spectroscopy holds substantial potential in elucidating the pathogenesis of myopia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729285 | PMC |
http://dx.doi.org/10.1364/BOE.539721 | DOI Listing |
J Refract Surg
September 2025
The College of Medicine, Taibah University, Medina, Saudi Arabia.
Purpose: To present a case of synthetic intrastromal corneal ring segment (ICRS) intrusion secondary to necrosis and migration, managed by implantation of corneal allogenic intrastromal ring segments (CAIRS) within the preexisting tunnel.
Methods: A 24-year-old man with known keratoconus underwent bilateral ICRS implantation. He presented with blurred vision in the right eye 6 weeks after the procedure.
J Refract Surg
September 2025
Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.
Purpose: To evaluate axis-dependent visual and refractive outcomes of small incision lenticule extraction (SMILE) in patients with interocular astigmatic axis discordance.
Methods: Seventy-five patients (150 eyes) with interocular astigmatic axis discordance were included in the study. Based on interocular axis combinations, patients were stratified into three cohorts: with-the-rule (WTR)/against-the-rule (ATR) (n = 19), WTR/oblique astigmatism (OA) (n = 39), and ATR/OA (n = 17).
J Refract Surg
September 2025
Purpose: To discuss the technique and outcome of what the authors called the "flap-in-flap" technique and report its safety as a procedure for correction of post-laser in situ keratomileusis (LASIK) myopic regression.
Methods: Seven eyes of 4 patients were included in this study. All patients had previously undergone LASIK for compound myopic astigmatism using the Moria M2 micro-keratome (Moria) 8 to 12 years prior to presentation.
J Refract Surg
September 2025
Department of Refractive Surgery, Aier Eye Hospital, Jinan University, Guangzhou, Guangdong, China.
Purpose: To report the refractive outcome of femtosecond laser-assisted lenticule intrastromal keratoplasty (LIKE) in correcting moderate to high hyperopia. Intraoperative effective optical zone (EOZ), centration offset, and postoperative higher order aberrations (HOAs) were analyzed to better understand factors affecting postoperative outcomes.
Methods: This was a prospective, consecutive case series study of LIKE for correcting hyperopia in one department from 2018 to 2023.
J Refract Surg
September 2025
From the Department of Ophthalmology at University of São Paulo, São Paulo, Brazil.
Purpose: To analyze stabilization results using various standard and accelerated corneal cross-linking (CXL) protocols in patients younger than 18 years.
Methods: This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 2020 guidelines. A bibliographic search was carried out based on PubMed and Scopus data, with the last being performed in December 2024.