A Robust, Biodegradable, and Fire-Retardant Cellulose Nanofibers-Based Structural Material Fabricated from Natural Sargassum.

Adv Mater

Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and T

Published: March 2025


Article Synopsis

  • There is a growing interest in sustainable alternatives to petrochemical plastics due to environmental pollution concerns, with cellulose showing promise due to its mechanical strength, cost-effectiveness, and biodegradability.
  • The flammability of cellulose limits its use, prompting research into enhancing its fire-retardant properties, particularly through the use of cellulose nanofiber and alginate from sargassum seaweed.
  • The resulting sargassum cellulose material exhibits impressive mechanical properties, thermal stability, low thermal expansion, and fire-retardant capabilities, suggesting significant potential in developing high-performance, eco-friendly structural materials.

Video Abstracts
Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

With increasing concern about the environmental pollution of petrochemical plastics, people are constantly exploring environmentally friendly and sustainable alternative materials. Compared with petrochemical materials, cellulose has overwhelming superiority in terms of mechanical properties, thermal properties, cost, and biodegradability. However, the flammability of cellulose hinders its practical application to a certain extent, so improving the fire-retardant properties of cellulose nanofiber-based materials has become a research focus. Here, cellulose nanofiber and alginate are extracted from abundant natural sargassum as high-strength nanoscale building blocks, and then a sargassum cellulose fire-retardant structural material is prepared through a bottom-up hydrogel layer-by-layer method. The structural materials obtained incorporate excellent mechanical properties (≈297 MPa), thermal stability (≈200 °C), low thermal expansion coefficient (≈7.17 × 10 K), and fire-retardant properties. This work largely improves the utilization of seaweed residue and natural polymers, providing a bio-based fire-retardant strategy, and has a wide range of development prospects in the field of fiber-based high-performance structural materials in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202417617DOI Listing

Publication Analysis

Top Keywords

structural material
8
natural sargassum
8
mechanical properties
8
fire-retardant properties
8
structural materials
8
cellulose
6
fire-retardant
5
materials
5
properties
5
robust biodegradable
4

Similar Publications

Background: The benefits of physical activity for frail older acutely hospitalized adults are becoming increasingly clear. To enhance opportunities for physical activity on geriatric wards, it is essential to understand the older adult's perspective.

Aim: The aim of the study was to explore the experiences and perceptions of physical activity among older adults during hospital stays on a geriatric ward.

View Article and Find Full Text PDF

Background: Post-viral syndromes, including long- and post-COVID, often lead to persistent symptoms such as fatigue and dyspnoea, affecting patients' daily lives and ability to work. The COVI-Care M-V trial examines whether interprofessional, patient-centred teleconsultations, initiated by general practitioners in cooperation with specialists, can help reduce symptom burden and improve care for patients.

Methods: To evaluate the effectiveness of the intervention under routine care conditions, a cluster-randomised controlled trial is being conducted.

View Article and Find Full Text PDF

Recent Developments in Catalytic Asymmetric Aziridination.

Top Curr Chem (Cham)

September 2025

Department of Organic Chemistry I, Faculty of Pharmacy and Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de La Universidad 7, 01006, Vitoria-Gasteiz, Spain.

Aziridines, structurally related to epoxides, are among the most challenging and fascinating heterocycles in organic chemistry due to their increasing applications in asymmetric synthesis, medicinal chemistry, and materials science. These three-membered nitrogen-containing rings serve as key intermediates in the synthesis of chiral amines, complex molecules, and pharmaceutically relevant compounds. This review provides an overview of recent progress in catalytic asymmetric aziridination, focusing on novel methodologies, an analysis of the scope and limitations of each approach, and mechanistic insights.

View Article and Find Full Text PDF

Structure, function and assembly of nuclear pore complexes.

Nat Rev Mol Cell Biol

September 2025

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.

The defining property of eukaryotic cells is the storage of heritable genetic material in a nuclear compartment. For eukaryotic cells to carry out the myriad biochemical processes necessary for their function, macromolecules must be efficiently exchanged between the nucleus and cytoplasm. The nuclear pore complex (NPC) - which is a massive assembly of ~35 different proteins present in multiple copies totalling ~1,000 protein subunits and architecturally conserved across eukaryotes - establishes a size-selective channel for regulated bidirectional transport of folded macromolecules and macromolecular assemblies across the nuclear envelope.

View Article and Find Full Text PDF

Proton transfer plays an important role in both hydrogen and oxygen evolution reactions during electrocatalytic water splitting to produce green hydrogen. However, directly adapting the conventional proton/deuterium kinetic isotope effect to study proton transfer in heterogeneous electrocatalytic processes is challenging. Here we propose using the shift in the Tafel slope between protic and deuteric electrolytes, or the Tafel slope isotope effect, as an effective probe of proton transfer characteristics.

View Article and Find Full Text PDF