Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The emergence of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) has improved the prognosis for lung cancer patients with EGFR-driven mutations. However, acquired resistance to EGFR-TKIs poses a significant challenge to the treatment. Overcoming the resistance has primarily focused on developing next-generation targeted therapies based on the molecular mechanisms of resistance or inhibiting the activation of bypass pathways to suppress or reverse the resistance. In this study we developed a novel approach by using CRISPR-Cas9 whole-genome library screening to identify the genes that enhance the sensitivity of lung adenocarcinoma cells to EGFR-TKIs. Through this screening, we revealed integrin subunit alpha 8 (ITGA8) as the key gene that enhanced sensitivity to abivertinib in lung adenocarcinoma. Notably, ITGA8 expression was significantly downregulated in lung adenocarcinoma tissues compared to adjacent normal tissues. Bioinformatics analyses revealed that ITGA8 was positively correlated with the sensitivity of lung adenocarcinoma to abivertinib. We showed that knockdown of ITGA8 significantly enhanced the proliferation, migration and invasion of H1975 cells. Conversely, overexpression of ITGA8 reduced the proliferation migration and invasion of H1975/ABIR cells. Furthermore, we demonstrated that ITGA8 sensitized lung adenocarcinoma cells to EGFR-TKIs by attenuating the downstream FAK/SRC/AKT/MAPK signaling pathway. In H1975 cell xenograft mouse models, knockdown of ITGA8 significantly increased tumor growth and reduced the sensitivity to abivertinib, whereas overexpression of ITGA8 markedly suppressed tumor proliferation and enhanced sensitivity to the drug. This study demonstrates that ITGA8 inhibits the proliferation, invasion and migration of lung adenocarcinoma cells, enhances the sensitivity to EGFR-TKIs, improves treatment efficacy, and delays the progression of acquired resistance. Thus, ITGA8 presents a potential therapeutic candidate for addressing acquired resistance to EGFR-TKIs from a novel perspective.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12032371PMC
http://dx.doi.org/10.1038/s41401-024-01451-0DOI Listing

Publication Analysis

Top Keywords

lung adenocarcinoma
28
sensitivity lung
12
acquired resistance
12
adenocarcinoma cells
12
itga8
11
lung
8
resistance egfr-tkis
8
cells egfr-tkis
8
enhanced sensitivity
8
sensitivity abivertinib
8

Similar Publications

Background: Identifying molecular alterations specific to advanced lung adenocarcinomas could provide insights into tumour progression and dissemination mechanisms.

Method: We analysed tumour samples, either from locoregional lesions or distant metastases, from patients with advanced lung adenocarcinoma from the SAFIR02-Lung trial by targeted sequencing of 45 cancer genes and comparative genomic hybridisation array and compared them to early tumours samples from The Cancer Genome Atlas.

Results: Differences in copy-number alterations frequencies suggest the involvement in tumour progression of LAMB3, TNN/KIAA0040/TNR, KRAS, DAB2, MYC, EPHA3 and VIPR2, and in metastatic dissemination of AREG, ZNF503, PAX8, MMP13, JAM3, and MTURN.

View Article and Find Full Text PDF

Low-Density Lipoprotein Receptor-Related Protein 11 Promotes Proliferation in Lung Adenocarcinoma.

Cancer Sci

September 2025

Section of Oncopathology and Morphological Pathology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.

Low-density lipoprotein receptor-related protein 11 (LRP11) is reported to be overexpressed in various cancers; however, its functional role in lung adenocarcinoma remains poorly understood. This study aimed to elucidate the tumor-promoting function of LRP11 in lung adenocarcinoma. We assessed the expression and function of LRP11 in lung adenocarcinoma cell lines through both silencing and overexpression experiments.

View Article and Find Full Text PDF

Trends in the incidence of lung cancer in never smokers in Eastern China: a retrospective population-based cohort study using regional electronic health records.

BMJ Open

September 2025

Department of Epidemiology, School of Public Health, and Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China

Objectives: Although lung cancer in never smokers (LCNSs) accounts for an estimated 25% of all lung cancer cases, the temporal trends in LCNS incidence and its broader epidemiological patterns remain poorly understood. Our study examines the temporal trends in LCNS incidence and analyses key epidemiological characteristics, specifically, the trends in mortality rates, survival rates and changes in age at onset to illuminate the reasons for temporal trends in LCNS incidence.

Design: Retrospective population-based cohort study.

View Article and Find Full Text PDF

Trajectories of Synchronous Subsolid Nodules in Patients with Resected Subsolid Lung Adenocarcinoma: A Multicenter Cohort Study.

J Thorac Oncol

September 2025

Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Emeritus Professor, Seoul National University College of Medicine, Seoul, Republic of Korea.

Introduction: Multifocal subsolid nodules (SSNs) are increasingly detected with widespread lung cancer screening and advanced thoracic imaging, representing a spectrum of multifocal lung adenocarcinomas (LUADs). When synchronous SSNs coexist with a surgically confirmed subsolid LUAD, their trajectories remain poorly understood, contributing to uncertainty regarding optimal management strategies. This study aimed to evaluate the clinical course and impact of synchronous SSNs in such patients and to identify features associated with their progression.

View Article and Find Full Text PDF

A pathological role of O-GlcNAcylation-driven TR11B production and function in lung adenocarcinoma.

Dev Cell

September 2025

Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Faculty of Medical Laborat

Cytokines link inflammation to tumorigenesis, but the role of post-translational modifications in regulating their function within the extra-tumoral environment remains poorly defined. Here, we identify tumor-derived tumor necrosis factor (TNF) receptor superfamily member 11B (TR11B) as a key driver of lung adenocarcinoma (LUAD) progression and therapeutic resistance. Mechanistically, O-GlcNAc transferase (OGT)-mediated O-GlcNAcylation at serine 151 stabilizes TR11B and facilitates its interaction with the membrane protein EPS15 homology domain-containing protein 1 (EHD1), promoting cyclin dependent kinase 2 (CDK2) phosphorylation and cell cycle progression.

View Article and Find Full Text PDF