Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Genome-scale metabolic models (GSMM) are commonly used to identify gene deletion sets that result in growth coupling and pairing product formation with substrate utilization and can improve strain performance beyond levels typically accessible using traditional strain engineering approaches. However, sustainable feedstocks pose a challenge due to incomplete high-resolution metabolic data for non-canonical carbon sources required to curate GSMM and identify implementable designs. Here we address a four-gene deletion design in the Pseudomonas putida KT2440 strain for the lignin-derived non-sugar carbon source, p-coumarate (p-CA), that proved challenging to implement. We examine the performance of the fully implemented design for p-coumarate to glutamine, a useful biomanufacturing intermediate. In this study glutamine is then converted to indigoidine, an alternative sustainable pigment and a model heterologous product that is commonly used to colorimetrically quantify glutamine concentration. Through proteomics, promoter-variation, and growth characterization of a fully implemented gene deletion design, we provide evidence that aromatic catabolism in the completed design is rate-limited by fumarase hydratase (FUM) enzyme activity in the citrate cycle and requires careful optimization of another fumarate hydratase protein (PP_0897) expression to achieve growth and production. A double sensitivity analysis also confirmed a strict requirement for fumarate hydratase activity in the strain where all genes in the growth coupling design have been implemented. Metabolic cross-feeding experiments were used to examine the impact of complete removal of the fumarase hydratase reaction and revealed an unanticipated nutrient requirement, suggesting additional functions for this enzyme. While a complete implementation of the design was achieved, this study highlights the challenge of completely inactivating metabolic reactions encoded by under-characterized proteins, especially in the context of multi-gene edits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732973PMC
http://dx.doi.org/10.1038/s41540-024-00480-zDOI Listing

Publication Analysis

Top Keywords

pseudomonas putida
8
carbon source
8
gene deletion
8
growth coupling
8
deletion design
8
fully implemented
8
fumarase hydratase
8
fumarate hydratase
8
design
7
addressing genome
4

Similar Publications

Assembly-line enzymes carry out multistep synthesis of important metabolites by using acyl carrier proteins (ACPs) to shuttle intermediates along defined sequences of active sites. Despite longstanding interest in reprogramming these systems for metabolic engineering and biosynthetic chemistry, the mechanisms underlying their reaction order remain poorly understood and difficult to control. Here we describe a β-ketoacyl-ACP reductase from Pseudomonas putida (PpFabG4) with an unusual selectivity for medium chains and use it to explore the molecular basis of substrate specificity in enzymes that pull intermediates from fatty acid synthesis, a common route to specialized products.

View Article and Find Full Text PDF

The secretion of ligninolytic enzyme provides a competitive advantage for microbial survival. These enzymes are commonly transported to the extracellular milieu via signal peptides for the catabolism of lignin, which cannot be translocated through the cell membrane. However, some bacterial ligninolytic enzymes lack signal peptides, yet they can still be secreted.

View Article and Find Full Text PDF

Quantitative decoding of coupled carbon and energy metabolism in Pseudomonas putida for lignin carbon utilization.

Commun Biol

August 2025

Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, USA.

Soil Pseudomonas species, which thrive on lignin derivatives, are widely explored for biotechnology applications in lignin valorization. However, how the native metabolism coordinates phenolic carbon processing with required cofactor generation remains poorly understood. Here, we achieve quantitative understanding of this metabolic balance through a detailed multi-omics investigation of Pseudomonas putida KT2440 grown on four common phenolic acid substrates: ferulate, p-coumarate, vanillate, and 4-hydroxybenzoate.

View Article and Find Full Text PDF

Ensuring biostable drinking water is a growing priority for drinking water utilities, especially in non- or minimally chlorinated distribution systems where microbial regrowth is controlled through nutrient limitation. In this study, we evaluated the efficacy of ultrafiltration (UF) and nanofiltration (NF) in reducing total organic carbon (TOC) and their impact on the microbiology in a pilot-scale drinking water distribution system over 7 weeks. NF achieved significantly higher TOC removal (75.

View Article and Find Full Text PDF

Application of Prodigiosin Extracts in Textile Dyeing and Novel Printing Processes for Halochromic and Antimicrobial Wound Dressings.

Biomolecules

August 2025

Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal.

The textile industry's reliance on synthetic dyes contributes significantly to pollution, highlighting the need for sustainable alternatives like biopigments. This study investigates the production and application of the biopigment prodigiosin, which was produced by with a yield of 1.85 g/L.

View Article and Find Full Text PDF