Publications by authors named "Thomas Eng"

Isoprenol (3-methyl-3-buten-1-ol) is a precursor to aviation fuels and other commodity chemicals and can be microbially synthesized from renewable carbon streams. Its production has been demonstrated in Pseudomonas putida KT2440 but its titers, rates, and yields have yet to reach commercially viable levels, potentially due to toxicity to the bacterial chassis. We hypothesized that utilization of Tolerization Adaptive Laboratory Evolution (TALE) would generate P.

View Article and Find Full Text PDF

Although synthetic biology can produce valuable chemicals in a renewable manner, its progress is still hindered by a lack of predictive capabilities. Media optimization is a critical, and often overlooked, process which is essential to obtain the titers, rates and yields needed for commercial viability. Here, we present a molecule- and host-agnostic active learning process for media optimization that is enabled by a fast and highly repeatable semi-automated pipeline.

View Article and Find Full Text PDF

Lignocellulose is a renewable resource for the production of a diverse array of platform chemicals, including the biofuel isoprenol. Although this carbon stream provides a rich source of sugars, other organic compounds, such as acetate, can be used by microbial hosts. Here, we examined the growth and isoprenol production in a strain pre-tolerized ("PT") background where its native isoprenol catabolism pathway is deleted, using glucose and acetate as carbon sources.

View Article and Find Full Text PDF

Indigoidine is a bioadvantaged platform molecule with diverse applications, including use as a textile dye, biotransistor, biosolar cell, biosensor, and food coloring. There are multiple microbial hosts and carbon sources that can be used and optimized for its production, yet there is limited guidance for which options have the greatest commercial potential. Here, we consider five different host microbes and combine genome-scale metabolic models with techno-economic and lifecycle assessment models.

View Article and Find Full Text PDF

Genome-scale metabolic models (GSMM) are commonly used to identify gene deletion sets that result in growth coupling and pairing product formation with substrate utilization and can improve strain performance beyond levels typically accessible using traditional strain engineering approaches. However, sustainable feedstocks pose a challenge due to incomplete high-resolution metabolic data for non-canonical carbon sources required to curate GSMM and identify implementable designs. Here we address a four-gene deletion design in the Pseudomonas putida KT2440 strain for the lignin-derived non-sugar carbon source, p-coumarate (p-CA), that proved challenging to implement.

View Article and Find Full Text PDF

Horizontal gene transfer (HGT) is a major process by which genes are transferred between microbes in the rhizosphere. However, examining HGT remains challenging due to the complexity of mimicking conditions within the rhizosphere. Fabricated ecosystems (EcoFABs) have been used to investigate several complex processes in plant-associated environments.

View Article and Find Full Text PDF

Unlabelled: Diazotrophic bacteria can reduce atmospheric nitrogen into ammonia enabling bioavailability of the essential element. Many diazotrophs closely associate with plant roots increasing nitrogen availability, acting as plant growth promoters. These associations have the potential to reduce the need for costly synthetic fertilizers if they could be engineered for agricultural applications.

View Article and Find Full Text PDF

Effective transport of biological systems as cargo during space travel is a critical requirement to use synthetic biology and biomanufacturing in outer space. Bioproduction using microbes will drive the extent to which many human needs can be met in environments with limited resources. Vast repositories of biological parts and strains are available to meet this need, but their on-site availability requires effective transport.

View Article and Find Full Text PDF

Unlabelled: The industrial amino acid production workhorse, Corynebacterium glutamicum naturally produces low levels of 2,3,5,6-tetramethylpyrazine (TMP), a valuable flavor, fragrance, and commodity chemical. Here, we demonstrate TMP production (∼0.8 g L-1) in C.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are trying to make more of a special substance called indigoidine using a bacteria called Pseudomonas putida.
  • They used a method that links the bacteria's growth to how much indigoidine it makes, testing over 4,100 possible ways to do this.
  • After many experiments, they created a version of the bacteria that makes a lot of indigoidine using a plant chemical called para-coumarate, showing that their approach works well for different settings and products.
View Article and Find Full Text PDF

Pseudomonas putida has emerged as a promising host for the conversion of biomass-derived sugars and aromatic intermediates into commercially relevant biofuels and bioproducts. Most of the strain development studies previously published have focused on P. putida KT2440, which has been engineered to produce a variety of non-native bioproducts.

View Article and Find Full Text PDF

Engineered cyanobacterium Synechococcus elongatus can use light and CO to produce sucrose, making it a promising candidate for use in co-cultures with heterotrophic workhorses. However, this process is challenged by the mutual stresses generated from the multispecies microbial culture. Here we demonstrate an ecosystem where S.

View Article and Find Full Text PDF

Corynebacterium glutamicum, a natural glutamate-producing bacterium adopted for industrial production of amino acids, has been extensively explored recently for high-level biosynthesis of amino acid derivatives, bulk chemicals such as organic acids and short-chain alcohols, aromatics, and natural products, including polyphenols and terpenoids. Here, we review the recent advances with a focus on biosystem design principles, metabolic characterization and modeling, omics analysis, utilization of nonmodel feedstock, emerging CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) tools for Corynebacterium strain engineering, biosensors, and novel strains of C. glutamicum.

View Article and Find Full Text PDF

In this study, a 14-gene edited KT2440 strain for heterologous indigoidine production was examined using three distinct omic datasets. Transcriptomic data indicated that CRISPR/dCpf1-interference (CRISPRi) mediated multiplex repression caused global gene expression changes, implying potential undesirable changes in metabolic flux. C-metabolic flux analysis (C-MFA) revealed that the core flux network after CRISPRi repression was conserved, with moderate reduction of TCA cycle and pyruvate shunt activity along with glyoxylate shunt activation during glucose catabolism.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on a genetically engineered microbial strain (BRC-JBEI 1.1.2) that efficiently produces bioproducts such as amino acids and biofuels.
  • Researchers resequenced the strain and analyzed how gene expression changes when transitioning from shake flasks to bioreactors, especially when exposed to an ionic liquid called cholinium lysinate.
  • Findings revealed distinct metabolic and regulatory responses essential for growth in industrial settings, along with variations in the accumulation of organic acids and bioproducts, enhancing our understanding of the engineered strain's performance in bioproduction.
View Article and Find Full Text PDF

Pseudomonas putida KT2440 is an emerging biomanufacturing host amenable for use with renewable carbon streams including aromatics such as para-coumarate. We used a pooled transposon library disrupting nearly all (4,778) non-essential genes to characterize this microbe under common stirred-tank bioreactor parameters with quantitative fitness assays. Assessing differential fitness values by monitoring changes in mutant strain abundance identified 33 gene mutants with improved fitness across multiple stirred-tank bioreactor formats.

View Article and Find Full Text PDF

High titer, rate, yield (TRY), and scalability are challenging metrics to achieve due to trade-offs between carbon use for growth and production. To achieve these metrics, we take the minimal cut set (MCS) approach that predicts metabolic reactions for elimination to couple metabolite production strongly with growth. We compute MCS solution-sets for a non-native product indigoidine, a sustainable pigment, in Pseudomonas putida KT2440, an emerging industrial microbe.

View Article and Find Full Text PDF

KT2440 is a promising bacterial chassis for the conversion of lignin-derived aromatic compound mixtures to biofuels and bioproducts. Despite the inherent robustness of this strain, further improvements to aromatic catabolism and toxicity tolerance of will be required to achieve industrial relevance. Here, tolerance adaptive laboratory evolution (TALE) was employed with increasing concentrations of the hydroxycinnamic acids -coumaric acid (CA) and ferulic acid (FA) individually and in combination (CA ​+ ​FA).

View Article and Find Full Text PDF

The rhizosphere microbiome (rhizobiome) plays a critical role in plant health and development. However, the processes by which the constituent microbes interact to form and maintain a community are not well understood. To investigate these molecular processes, we examined pairwise interactions between 11 different microbial isolates under select nutrient-rich and nutrient-limited conditions.

View Article and Find Full Text PDF

ATCC 13032 is an established and industrially-relevant microbial host that has been utilized for the expression of many desirable bioproducts. Tetra-methylpyrazine (TMP) is a naturally occurring alkylpyrazine with broad applications spanning fragrances to resins. We identified an engineered strain of which produces 5 ​g/L TMP and separately, a strain which can co-produce both TMP and the biofuel compound isopentenol.

View Article and Find Full Text PDF

sp. strain 33MFTa1.1 was isolated for functional host-microbe interaction studies from the root-associated microbiome.

View Article and Find Full Text PDF

Advances in engineering biology have expanded the list of renewable compounds that can be produced at scale via biological routes from plant biomass. In most cases, these chemical products have not been evaluated for effects on biological systems, defined in the present study as bioactivity, that may be relevant to their manufacture. For sustainable chemical and fuel production, the industry needs to transition from fossil to renewable carbon sources, resulting in unprecedented expansion in the production and environmental distribution of chemicals used in biomanufacturing.

View Article and Find Full Text PDF

Background: Many microbes used for the rapid discovery and development of metabolic pathways have sensitivities to final products and process reagents. Isopentenol (3-methyl-3-buten-1-ol), a biogasoline candidate, has an established heterologous gene pathway but is toxic to several microbial hosts. Reagents used in the pretreatment of plant biomass, such as ionic liquids, also inhibit growth of many host strains.

View Article and Find Full Text PDF