Tunable Memory Performances of Hyperbranched Polyimides Functionalized with Metal-Porphyrins.

Chemphyschem

Key Laboratory of Advanced Structural Materials, Ministry of Education, School of Materials Science and Engineering, Changchun University of Technology, Changchun, Jilin, China.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

With the rapid advancement of information technology, the need to achieve ultra-high-density data storage has become a pressing necessity. This study synthesized three hyperbranched polyimides (HBPI-TAPP, HBPI-(Zn)TAPP, and HBPI-(Cu)TAPP) by polymerizing 5,10,15,20-tetrakis(4-aminophenyl)porphyrin (TAPP), which features a cavity for metal ion coordination, with 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA), to systematically investigate the effect of metal ion species on storage performance. According to the results, memory devices based on HBPI-(Zn)TAPP exhibit volatile SRAM (static random-access memory) characteristics, whereas devices employing HBPI-TAPP and HBPI-(Cu)TAPP demonstrate non-volatile WORM (write-once, read-many) characteristics. Molecular simulations based on density functional theory (DFT) reveal that the storage behaviors of these polymers are governed by a charge-transfer mechanism, wherein electrons transfer from the porphyrin donor segment to the 6FDA acceptor segment, forming charge-transfer complexes that are not easily dissociated. The larger dipole moments of HBPI-TAPP and HBPI-(Cu)TAPP render the complexes difficult to dissociate, resulting in WORM-type memory behavior. In contrast, HBPI-(Zn)TAPP has the lowest threshold voltage, with a stronger electron binding that hinders the dissociation of the charge transfer complex, thereby enabling SRAM-type memory behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.202401090DOI Listing

Publication Analysis

Top Keywords

hyperbranched polyimides
8
metal ion
8
hbpi-tapp hbpi-cutapp
8
memory behavior
8
tunable memory
4
memory performances
4
performances hyperbranched
4
polyimides functionalized
4
functionalized metal-porphyrins
4
metal-porphyrins rapid
4

Similar Publications

Metal Porphyrin-Terminated Hyperbranched Polyimides for Resistive Switching in Nonvolatile Memory Devices.

Chemphyschem

September 2025

Key Laboratory of Advanced Structural Materials, Ministry of Education, School of Materials Science and Engineering, Changchun University of Technology, Changchun, Jilin, 130012, China.

Polymer resistive random-access memory (RRAM) holds great promise for flexible wearable electronics and artificial intelligence, yet its development is hindered by chain entanglement and intermolecular interactions, leading to processing challenges, high operating voltages, and unstable switching parameters. Herein, metal-porphyrin-terminated hyperbranched polyimides (ATPP@HBPI, (Zn)ATPP@HBPI, and (Cu)ATPP@HBPI) were synthesized. The hyperbranched structure mitigates intermolecular interactions, while ionic doping modulates conductivity, and the synergistic effect of ions and electrons optimizes resistive switching behavior.

View Article and Find Full Text PDF

This study synthesizes novel polyimide (B2FO PI) films using 4,4'-(1,4-phenyleneisopropylidene)diphenoxy bis(2-(trifluoromethyl)-4-aminobenzene) (B2FDA) and 4,4'-oxydiphthalic anhydride (ODPA), as well as polyimide (PI) hybrid films incorporating a hyperbranched fluorinated cyclotriphosphazene polymer. The findings indicate that incorporating the hyperbranched cyclotriphosphazene significantly enhances the hybrid films' performance by increasing the cross-linking density of the polyimide chains. Moreover, the hybrid PI films demonstrate excellent water resistance, superior thermomechanical properties, enhanced flame-retardant characteristics, and a low dielectric constant.

View Article and Find Full Text PDF

Full Recovery of Polyimide Wastes Into High-Value Products Through Break and Reconstruction of Imide Ring.

Adv Sci (Weinh)

April 2025

The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China.

Polyimide (PI) is a promising engineering plastic but difficult to recycle due to its aromatic heterocyclic structures, especially for thermosetting PI. Herein, an ingenious cascade pathway for high-value and full recovery of thermosetting PI under mild conditions is presented. Specifically, the imide ring is first broken through aminolysis to degrade PI and is reconstructed under following hydrolysis to achieve excellent thermal stability in subsequent products.

View Article and Find Full Text PDF

Tunable Memory Performances of Hyperbranched Polyimides Functionalized with Metal-Porphyrins.

Chemphyschem

April 2025

Key Laboratory of Advanced Structural Materials, Ministry of Education, School of Materials Science and Engineering, Changchun University of Technology, Changchun, Jilin, China.

With the rapid advancement of information technology, the need to achieve ultra-high-density data storage has become a pressing necessity. This study synthesized three hyperbranched polyimides (HBPI-TAPP, HBPI-(Zn)TAPP, and HBPI-(Cu)TAPP) by polymerizing 5,10,15,20-tetrakis(4-aminophenyl)porphyrin (TAPP), which features a cavity for metal ion coordination, with 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA), to systematically investigate the effect of metal ion species on storage performance. According to the results, memory devices based on HBPI-(Zn)TAPP exhibit volatile SRAM (static random-access memory) characteristics, whereas devices employing HBPI-TAPP and HBPI-(Cu)TAPP demonstrate non-volatile WORM (write-once, read-many) characteristics.

View Article and Find Full Text PDF

Advances in nanomaterials for radiation protection in the aerospace industry: a systematic review.

Nanotechnology

January 2025

Departamento de Física, Química e Matemática, CCTS, UFSCar-campus Sorocaba, Sorocaba, SP 18052-780, Brazil.

Nanomaterials stand out for their exceptional properties and innovative potential, especially in applications that protect against space radiation. They offer an innovative approach to this challenge, demonstrating notable properties of radiation absorption and scattering, as well as flexibility and lightness for the development of protective clothing and equipment. This review details the use of polymeric materials, such as polyimides (PIs), which are efficient at attenuating ultraviolet (UV) radiation and atomic oxygen.

View Article and Find Full Text PDF