98%
921
2 minutes
20
Background: Glioblastoma multiforme (GBM) is a highly aggressive brain cancer with poor prognosis and limited treatment options. Despite advances in understanding its molecular mechanisms, effective therapeutic strategies remain elusive due to the tumor's genetic complexity and heterogeneity.
Methods: This study employed a comprehensive analysis approach integrating 113 machine learning algorithms with Mendelian Randomization (MR) analysis to investigate the molecular underpinnings of GBM. Five publicly available gene expression datasets were analyzed to identify differentially expressed genes (DEGs) associated with GBM. Weighted Gene Co-expression Network Analysis (WGCNA) was used to identify GBM-related gene modules. Further, gene set enrichment and variation analyses were conducted to explore the biological pathways involved. The machine learning models were evaluated using Receiver Operating Characteristic (ROC) curves and confusion matrices to assess their predictive accuracy, with the best-performing model validated across external datasets. MR analysis was performed to establish causal relationships between genetically predicted gene expression levels and GBM outcomes.
Results: The study identified 286 DEGs between GBM and adjacent normal tissues across five datasets. WGCNA highlighted the yellow module as the most relevant to GBM, containing key genes such as KLHL3, FOXO4, and MAP1A. Of the 113 machine learning models tested, Ridge regression achieved the highest area under the curve (AUC) of 0.92, demonstrating robust predictive accuracy. Validation using external datasets confirmed the model's reliability, with a classification accuracy of 89.5% in the training set and 85.3% in the validation sets. MR analysis provided strong evidence of a causal relationship between the expression levels of the identified genes and GBM risk.
Conclusions: This study demonstrates the power of combining machine learning and Mendelian Randomization to uncover novel genetic markers for GBM. The identified genes offer promising potential as biomarkers for GBM diagnosis and therapy, providing new avenues for personalized treatment strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730047 | PMC |
http://dx.doi.org/10.1007/s12672-025-01792-0 | DOI Listing |
Bull Entomol Res
September 2025
Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Xalapa, Veracruz, México.
Insect pupae change morphologically (e.g., pigmentation of eyes, wings, setae and legs) during the intrapuparial period.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
While the cancer genome is well-studied, the nongenetic exposome of cancer remains elusive, particularly for regionally prevalent cancers with poor prognosis. Here, by employing a combined knowledge- and data-driven strategy, we profile the chemical exposome of plasma from 53 healthy controls, 14 esophagitis and 101 esophageal squamous cell carcinoma (ESCC) patients, and 46 esophageal tissues across 12 Chinese provinces, integrating inorganic, endogenous, and exogenous chemicals. We first show that components of the ESCC chemical exposome mediate the relationship between ESCC-related dietary/lifestyle factors and clinic health status indicators.
View Article and Find Full Text PDFJAMA Netw Open
September 2025
Department of Social Epidemiology, Graduate School of Medicine and School of Public Health, Kyoto University, Kyoto, Japan.
Importance: Previous studies have suggested that social participation helps prevent depression among older adults. However, evidence is lacking about whether the preventive benefits vary among individuals and who would benefit most.
Objective: To examine the sociodemographic, behavioral, and health-related heterogeneity in the association between social participation and depressive symptoms among older adults and to identify the individual characteristics among older adults expected to benefit the most from social participation.
Nutr Health
September 2025
Independent researcher, Rome, Italy.
Artificial intelligence (AI) is increasingly applied in nutrition science to support clinical decision-making, prevent diet-related diseases such as obesity and type 2 diabetes, and improve nutrition care in both preventive and therapeutic settings. By analyzing diverse datasets, AI systems can support highly individualized nutritional guidance. We focus on machine learning applications and image recognition tools for dietary assessment and meal planning, highlighting their potential to enhance patient engagement and adherence through mobile apps and real-time feedback.
View Article and Find Full Text PDFMed Biol Eng Comput
September 2025
Department of Computer Science, Università degli Studi di Bari Aldo Moro, Bari, Italy.
Fetal standard plane detection is essential in prenatal care, enabling accurate assessment of fetal development and early identification of potential anomalies. Despite significant advancements in machine learning (ML) in this domain, its integration into clinical workflows remains limited-primarily due to the lack of standardized, end-to-end operational frameworks. To address this gap, we introduce FetalMLOps, the first comprehensive MLOps framework specifically designed for fetal ultrasound imaging.
View Article and Find Full Text PDF