Initial abiotic factors as key drivers in core microbe assembly: Regulatory effects on flavor profiles in light-flavor .

Food Chem X

Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Instability in initial abiotic factors of open solid-state fermentation systems can significantly alter 's flavor profile, but the mechanisms governing microbial interactions and flavor formation remain unclear. This study comprehensively monitored changes in abiotic factors, microbial communities, and flavor profiles across two distinct fermentation processes in a distillery, which differed significantly in their management of initial abiotic factors. Our results revealed significant differences in abiotic factors between the two groups, including moisture, ethanol, acidity, glucose, and organic acid levels. The assembly of microbial communities in fermented grains was primarily driven by deterministic processes. The moisture content in the fermented grains positively affected the growth and metabolism of core microbiota. The rapid proliferation and metabolism of core microbes led to a rapid increase in the acidity of the fermented grains, alongside a significant accumulation of ethyl lactate. This study provides technical support and theoretical guidance for production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721831PMC
http://dx.doi.org/10.1016/j.fochx.2024.101982DOI Listing

Publication Analysis

Top Keywords

abiotic factors
20
initial abiotic
12
fermented grains
12
flavor profiles
8
microbial communities
8
metabolism core
8
factors
5
factors key
4
key drivers
4
drivers core
4

Similar Publications

Euglena sanguinea (Ehrenberg 1831) is one of the earliest reported species within the genus Euglena. Its prolific proliferation leading to red algal bloom has garnered significant scientific attention due to its ecological and environmental impacts. Despite this, research on E.

View Article and Find Full Text PDF

Endophytic fungi are nonpathogenic fungi that live symbiotically in the interior of healthy plant tissues and form mutualistic associations with their hosts. These fungi are critically involved in promoting plant development, strengthening plant uptake of nutrients, and improving plant resistance to biotic and abiotic stress conditions. Endophytic fungi improve plant growth by synthesizing phytohormones (e.

View Article and Find Full Text PDF

Legumes are essential for agriculture and food security. Biotic and abiotic stresses pose significant challenges to legume production, lowering productivity levels. Most legumes must be genetically improved by introducing alleles that give pest and disease resistance, abiotic stress adaptability, and high yield potential.

View Article and Find Full Text PDF

DREB7 in (L) is a novel trans-acting transcription factor (TF) that binds to the -acting sequences of promoters to activate the expression of downstream genes in response to abiotic factors. This study presents the experimental results and analyzes the relationship between the overexpression of the and , as well as the proline content, in transgenic soybean lines. The results of qRT-PCR analysis of four TG1 transgenic soybean lines (TG1-2, TG1-5, TG1-7, and TG1-10) showed that the gene had significantly higher transcriptional expression under untreated and salt stress conditions.

View Article and Find Full Text PDF

CsWRKY15 from tea plant promotes its auto-resistance when intercropped with chestnut.

Plant Cell Physiol

September 2025

Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, College of Landscape Architecture and Horticulture Science, Southwest Forestry University, Kunming 650224, China.

To explore the role of WRKY transcription factors in resistance, a WRKY15 homologous gene, CsWRKY15, and its promoter were isolated from tea plants when intercropped with chestnut. CsWRKY15 expression was significantly induced by ethephon, polyethylene glycol (PEG), and low temperature. Notably, its expression was strongly induced by exogenous gibberellic acid (GA3).

View Article and Find Full Text PDF