Developmental and neurotoxic effects of dimethyl phthalate on zebrafish embryos and larvae.

Aquat Toxicol

Henan Engineering Research Center of Zebrafish Models for Human Disease and Drug Screening, Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China; Department of Nephrology and Rheumatology, Children's Hospital

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Dimethyl phthalate (DMP) has been extensively utilized as a plasticizer on a global scale for many years. Its presence in the environment and its harmful effects on living organisms have raised concerns. This study aimed to examine its potential developmental neurotoxicity by utilizing zebrafish as a model. Zebrafish embryos were exposed to different concentrations of DMP (5-100 mg/L) from 4 to 120 h post-fertilization (hpf). The survival, hatching, and malformation rates were recorded for each group. Behavioral analysis was conducted on zebrafish larvae, and transgenic zebrafish Tg(elavl3:EGFP) were used to assess the impact of DMP on neuronal cells. The mRNA levels of key neurological marker genes were evaluated at 96 hpf of DMP exposure. The study revealed that exposure to DMP resulted in decreased survival and hatching rates in zebrafish. Embryos treated with 50 mg/L of DMP exhibited lower average survival rates (72.78-78.33%) between 24-96 hpf, while treatment with 25-50 mg/L of DMP resulted in reduced hatching rates (39.44% and 2.22%, respectively) at 48 hpf compared to the control group. Moreover, exposure to 25-50 mg/L of DMP caused an increase in malformations, such as tail curvature, spinal curvature, yolk sac edema and pericardial edema. Interestingly, at 24 hpf, DMP also resulted in an increase in spontaneous tail coiling in zebrafish embryos, as well as a decrease in their swimming distance at 120 hpf. Furthermore, treatment with 50 mg/L of DMP led to a decrease in the fluorescence intensity of transgenic zebrafish Tg(elavl3: EGFP). RT-qPCR analysis showed a significant down-regulation of marker genes (gap43, mbp, α1-tubulin, syn2a) associated with nervous system function in DMP-treated zebrafish. Overall, these findings offer a thorough understanding of the mechanisms underlying the neurotoxicity caused by DMP, highlighting the risk of DMP on developmental and neurotoxic effects in zebrafish. Therefore, strict supervision of DMP use and release is essential to safeguard ecological and aquatic organisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2025.107241DOI Listing

Publication Analysis

Top Keywords

zebrafish embryos
16
mg/l dmp
16
dmp
13
zebrafish
10
developmental neurotoxic
8
neurotoxic effects
8
dimethyl phthalate
8
survival hatching
8
transgenic zebrafish
8
marker genes
8

Similar Publications

The SH2B family, which includes SH2B1, SH2B2, and SH2B3, consists of adaptor proteins that possess conserved Src homology 2 (SH2) and pleckstrin homology (PH) domains, playing essential roles as signaling mediators. However, the gene expression patterns of this family during embryonic development are still mostly unclear. In this study, we first investigated the evolutionary conservation of SH2B across multiple species using phylogenetic analysis, which revealed high sequence homology between zebrafish Sh2b and its orthologs in other vertebrates.

View Article and Find Full Text PDF

Purpose: The aim of the study was to evaluate the toxicity of triclosan in the Danio rerio model and mammalian cells, as well as to assess its antimicrobial and antibiofilm activity against selected bacterial pathogens.

Methods: Triclosan toxicity was assessed in Danio rerio embryos in accordance with OECD Test Guideline 236: Fish Embryo Acute Toxicity (FET) Test. Cytotoxicity was evaluated in vitro using the MTT assay on human dermal fibroblasts (BJ) and rat cardiomyoblasts (H9c2).

View Article and Find Full Text PDF

The immune system is the ultimate defense against diseases and its dysregulated homeostasis greatly threatens human health. Natural polysaccharides have a variety of biological activities and show promising applications in immunomodulation. In this study, we characterized the structure of the polysaccharide IRPS-TE-3 from Isatidis Radix using morphological analysis, molecular weight analysis, monosaccharide composition analysis, methylation analysis and nuclear magnetic resonance spectroscopy.

View Article and Find Full Text PDF

The synaptonemal complex (SC) is a meiosis-specific structure that aligns homologous chromosomes and promotes the repair of meiotic DNA double-strand breaks (DSBs). To investigate how defects in SC formation affect gametogenesis in zebrafish, we analyzed mutations in two genes encoding core SC components: syce2 and sycp1. In syce2 mutants, chromosomes exhibit partial synapsis, primarily at sub-telomeric regions, whereas sycp1 mutant chromosomes display early prophase co-alignment but fail to synapse.

View Article and Find Full Text PDF

Comprehensive analysis of environmental and health hazards posed by pharmaceutical products and pollutants is essential for human safety, and the assessment protocols include animal testing. However, there is an emphasis on adopting the principle of 3Rs, which encourages the utilization of non-animal as well as alternate animal models. Due to more than one cell type, embryos are considered as an alternative to animal models.

View Article and Find Full Text PDF