Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Hyperuricemia, a disorder of purine metabolism associated with cardiovascular disease, gout, and kidney disease, can be alleviated by food-derived peptides. However, the precise mechanisms remain unclear, hindering their development. This study reviews uric acid-lowering peptides from various sources, focusing on two pathways: inhibiting uric acid production and promoting excretion. Low-molecular-weight peptides (<1000 Da) exhibited superior uric acid-lowering effects. We further explored the relationships between amino acid composition and their target interactions. Peptides rich in cyclic amino acids (tryptophan, phenylalanine, and histidine) and containing small amounts of linear amino acids (leucine, cysteine, and glycine) demonstrated significant potential for lowering uric acid. These findings provide theoretical support for developing novel functional foods for the management of hyperuricemia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11719947 | PMC |
http://dx.doi.org/10.3390/foods14010058 | DOI Listing |