Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Currently, to deal with the increasingly severe energy crisis and environmental consequences, photocatalytic technology is considered as a promise solution, and the construction of Z-scheme heterostructures are important strategies to maximize the utilization of solar energy and improve photocatalytic performance. Herein, a novel full spectrum-responsive Z-scheme Bi-BiVO-BiTiO heterojunction was constructed by a facile hydrothermal method without any templates or surfactants. A series of detailed analyses revealed that the novel Bi-BiVO-BiTiO heterojunction catalyst were prepared successfully. DRS and PL techniques analysis demonstrated that the solar spectral response and photon-generated charge carriers can be greatly enhanced by the synergistic effect of BiVO-BiTiO heterojunction and Bi surface plasmon resonance. Under full solar-spectrum light irradiation, Bi-BiVO-BiTiO heterojunction showed the best photocatalytic degradation efficiency of tigecycline (over 90%) within 120 min. It was double higher than those of pure BiVO and single BiTiO. Furthermore, the catalytic mechanism and reaction path were thoroughly studied by combining with active species capture experiments and intermediates analysis. This work provides facile and efficient strategy for the design and development of efficient novel photocatalyst with full spectral response and effective solar light utilization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2025.120797DOI Listing

Publication Analysis

Top Keywords

bi-bivo-bitio heterojunction
12
z-scheme bi-bivo-bitio
8
full solar-spectrum
8
spectral response
8
construction non-noble
4
non-noble decorated
4
decorated z-scheme
4
bi-bivo-bitio
4
bi-bivo-bitio enhanced
4
full
4

Similar Publications

Electric gating in atomically thin field-effect devices based on transition-metal dichalcogenides has recently been employed to manipulate their excitonic states, even producing exotic phases of matter, such as an excitonic insulator or Bose-Einstein condensate. Here, we mimic the electric gating effect of a bilayer-MoS on graphite by charge transfer induced by the adsorption of molecular p- and n-type dopants. The electric fields produced are evaluated from the electronic energy-level realignment and Stark splitting determined by X-ray and UV photoelectron spectroscopy measurements and compare very well with literature values obtained by optical spectroscopy for similar systems.

View Article and Find Full Text PDF

MoSe nanosheet/Si heterojunction photodetectors were fabricated by a mechanical exfoliation method, and their electrical and optical properties at different temperatures were investigated. It was found that the MoSe nanosheet/Si heterojunction device exhibited excellent rectification characteristics at room temperature, and the rectification ratio gradually decreased with the decrease of temperature. The temperature-dependent electrical properties of the MoSe/Si heterojunction device were actually caused by the inhomogeneity of the potential barrier.

View Article and Find Full Text PDF

Selective and rapid detection of ammonia (NH) gas over a wide concentration range is essential for applications such as early diagnosis of renal diseases and environmental safety. NH in exhaled breath serves as a biomarker of kidney function, and its precise detection is vital for early renal disease diagnosis. This work reports a SnS/PANI heterojunction nanocomposite (SPA) sensor synthesized a hydrothermal route followed by oxidative polymerization.

View Article and Find Full Text PDF

Excessive fossil fuel combustion has accelerated renewable energy development, with hydrogen energy emerging as a promising alternative due to its high energy density and environmental compatibility. Photocatalytic hydrogen production through solar energy conversion represents a viable approach for sustainable development. Metal-organic frameworks (MOFs) have garnered significant research interest owing to their structural tunability, well-defined catalytic sites, and post-synthetic modification capabilities.

View Article and Find Full Text PDF

A CuBiO/TiO p-n Heterojunction for Enhancing the Barrier Protection of a Nickel-Based Layer on the Magnesium Alloy.

J Phys Chem Lett

September 2025

Precise Synthesis and Function Development Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, PR China.

Herein, CuBiO microspheres were first deposited on TiO nanotube arrays to develop a p-n CuBiO/TiO heterojunction by a facile hydrothermal protocol. The variations in the photoinduced open-circuit potential, photocurrent, and electrochemical parameters of the nickel-plated magnesium alloy (Mg/Ni) demonstrated the remarkably strengthened photoelectrochemical efficiency and photocathodic protection (PCP) capability caused by the CuBiO modification. This enhancement is attributed to establishing a built-in electric field and intensified light absorption in a broadened wavelength spectrum, confirmed by the valence band XPS and ultraviolet-visible spectra.

View Article and Find Full Text PDF