Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The applications of single-cell and spatial technologies in recent times have revolutionized the present understanding of cellular states and the cellular heterogeneity inherent in complex biological systems. These advancements offer unprecedented resolution in the examination of the functional genomics of individual cells and their spatial context within tissues. In this review, we have comprehensively discussed the historical development and recent progress in the field of single-cell and spatial genomics. We have reviewed the breakthroughs in single-cell multi-omics technologies, spatial genomics methods, and the computational strategies employed toward the analyses of single-cell atlas data. Furthermore, we have highlighted the advances made in constructing cellular atlases and their clinical applications, particularly in the context of disease. Finally, we have discussed the emerging trends, challenges, and opportunities in this rapidly evolving field.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11427-024-2770-xDOI Listing

Publication Analysis

Top Keywords

single-cell spatial
12
spatial genomics
12
applications single-cell
8
single-cell
5
spatial
5
advances applications
4
genomics
4
genomics applications
4
spatial technologies
4
technologies times
4

Similar Publications

Background: Immunotherapy holds significant yet underexplored potential for low-grade glioma (LGG) treatment. We therefore interrogated the role of Fanconi Anemia Complementation Group C (FANCC) as a novel immune checkpoint regulator given its spatial correlation with tumor microenvironments and clinical associations with immunosuppressive markers.

Objectives: FANCC is implicated in various tumor progressions; its role in LGG remains unexplored.

View Article and Find Full Text PDF

Serous endometrial carcinoma (SEC) is one of the most lethal types of uterine cancer, responsible for about 40% of all endometrial cancer-related deaths. Cell state dynamics during the early stages of SEC remain largely unknown, thereby hindering early detection and treatment of this disease. Here, we provide a comprehensive census of cell types and their states for normal, predysplastic, and dysplastic endometrium in a genetic mouse model of SEC.

View Article and Find Full Text PDF

Trehalose 6-phosphate - a central regulator at the crossroads of sugar signalling, metabolism, and development.

New Phytol

September 2025

Institute of Plant Biochemistry and Cluster of Excellences on Plant Science (CEPLAS), Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Düsseldorf, 40225, Germany.

In mammals, blood sugar levels are tightly controlled by two hormones: insulin and glucagon. In flowering plants, a comparable regulatory mechanism exists, mediated by the sugar-signalling molecule trehalose 6-phosphate (Tre6P). Similar to insulin, Tre6P functions as a signal and negative feedback regulator of sucrose, the main transport sugar in vascular plants.

View Article and Find Full Text PDF

Single-Cell Membrane Molecular Cartography Enabled by Nanoengineered VUV-LDI Mass Spectrometry Imaging.

Anal Chem

September 2025

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

Deciphering the multicomponent of cell membranes at the single-cell level is critical for understanding pathological mechanisms such as tumor metastasis, yet remains technically daunting due to the membrane's nanoscale thickness and ultralow molecular abundance. Here, we introduce a surface-assisted vacuum ultraviolet laser desorption-ionization mass spectrometry imaging (SAVUVDI-MSI) platform that overcomes long-standing challenges of cytoplasmic interference and insufficient sensitivity. Leveraging the nanoscale depth profiling capability of VUV-LDI, we achieve precise ablation of a single-cell membrane.

View Article and Find Full Text PDF

OmnibusX: A unified platform for accessible multi-omics analysis.

PLoS Comput Biol

September 2025

OmnibusXLab, OmnibusX Company Limited, Ho Chi Minh City, Vietnam.

OmnibusX is an integrated, privacy-centric platform that enables code-free multi-omics data analysis by bridging computational methodologies with user-friendly interfaces. Designed to overcome challenges posed by fragmented analytical tools and high computational barriers, OmnibusX consolidates workflows for diverse technologies - including bulk RNA-seq, single-cell RNA-seq, single-cell ATAC-seq, and spatial transcriptomics - into a single, cohesive application. The application integrates established open-source tools such as Scanpy, DESeq2, SciPy, and scikit-learn into transparent, reproducible pipelines, offering users control over analytical parameters.

View Article and Find Full Text PDF