Harnessing the Power of Machine Learning Guided Discovery of NLRP3 Inhibitors Towards the Effective Treatment of Rheumatoid Arthritis.

Cells

Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The NLRP3 inflammasome, plays a critical role in the pathogenesis of rheumatoid arthritis (RA) by activating inflammatory cytokines such as IL1β and IL18. Targeting NLRP3 has emerged as a promising therapeutic strategy for RA. In this study, a multidisciplinary approach combining machine learning, quantitative structure-activity relationship (QSAR) modeling, structure-activity landscape index (SALI), docking, molecular dynamics (MD), and molecular mechanics Poisson-Boltzmann surface area MM/PBSA assays was employed to identify novel NLRP3 inhibitors. The ChEMBL database was used to retrieve compounds with known IC values to train machine learning (ML) models using the Lazy Predict package. After data pre-processing, 401 non-redundant structures were selected for exploratory data analysis (EDA). PubChem and MACCS fingerprints were used to predict the inhibitory activities of the compounds. SALI was used to identify structurally similar compounds with significantly different biological activities. The compounds were docked using MOE to assess their binding affinities and interactions with key residues in NLRP3. The models were evaluated, and a comparative analysis revealed that the ensemble Random Forest (RF) model (PubChem fingerprints) with RMSE (0.731), R (0.622), and MAPE (8.988) and bootstrap aggregating model (MACCS fingerprints) with RMSE (0.687), R (0.666), and MAPE (9.216) on the testing set performed well, in accordance with the Organization for Economic Cooperation and Development (OECD) guidelines. Out of all docked compounds, the two most promising compounds (ChEMBL5289544 and ChEMBL5219789) with binding scores of -7.5 and -8.2 kcal/mol were further investigated by MD to evaluate their stability and dynamic behavior within the binding site. MD simulations (200 ns) revealed strong structural stability, flexibility, and interactions in the selected complexes. MM/PBSA binding free energy calculations revealed that van der Waals and electrostatic forces were the key drivers of the binding of the protein with ligands. The outcomes obtained can be used to design more potent and selective NLRP3 inhibitors as therapeutic agents for the treatment of inflammatory diseases such as RA. However, concerns related to the lack of large datasets, experimental validation, and high computational costs remain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11719798PMC
http://dx.doi.org/10.3390/cells14010027DOI Listing

Publication Analysis

Top Keywords

machine learning
12
nlrp3 inhibitors
12
rheumatoid arthritis
8
maccs fingerprints
8
activities compounds
8
fingerprints rmse
8
nlrp3
6
compounds
6
binding
5
harnessing power
4

Similar Publications

Introduction: Vision language models (VLMs) combine image analysis capabilities with large language models (LLMs). Because of their multimodal capabilities, VLMs offer a clinical advantage over image classification models for the diagnosis of optic disc swelling by allowing a consideration of clinical context. In this study, we compare the performance of non-specialty-trained VLMs with different prompts in the classification of optic disc swelling on fundus photographs.

View Article and Find Full Text PDF

Multi-Omics and Clinical Validation Identify Key Glycolysis- and Immune-Related Genes in Sepsis.

Int J Gen Med

September 2025

Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.

Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.

Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.

View Article and Find Full Text PDF

Accurate differentiation between persistent vegetative state (PVS) and minimally conscious state and estimation of recovery likelihood in patients in PVS are crucial. This study analyzed electroencephalography (EEG) metrics to investigate their relationship with consciousness improvements in patients in PVS and developed a machine learning prediction model. We retrospectively evaluated 19 patients in PVS, categorizing them into two groups: those with improved consciousness ( = 7) and those without improvement ( = 12).

View Article and Find Full Text PDF

Artificial intelligence (AI) is a technique or tool to simulate or emulate human "intelligence." Precision medicine or precision histology refers to the subpopulation-tailored diagnosis, therapeutics, and management of diseases with its sociocultural, behavioral, genomic, transcriptomic, and pharmaco-omic implications. The modern decade experiences a quantum leap in AI-based models in various aspects of daily routines including practice of precision medicine and histology.

View Article and Find Full Text PDF

Introduction: Spinal cord injury (SCI) presents a significant burden to patients, families, and the healthcare system. The ability to accurately predict functional outcomes for SCI patients is essential for optimizing rehabilitation strategies, guiding patient and family decision making, and improving patient care.

Methods: We conducted a retrospective analysis of 589 SCI patients admitted to a single acute rehabilitation facility and used the dataset to train advanced machine learning algorithms to predict patients' rehabilitation outcomes.

View Article and Find Full Text PDF