Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Unveiling novel pathways for drug discovery forms the foundation of a new era in the combat against tuberculosis. The discovery of a novel drug, bedaquiline, targeting mycobacterial ATP synthase highlighted the targetability of the energy metabolism pathway. The significant potency of bedaquiline against heterogeneous population of marks ATP synthase as an important complex of the electron transport chain. This review focuses on the importance and unique characteristics of mycobacterial ATP synthase. Understanding these distinctions enables the targeting of ATP synthase subunits for drug discovery, without aiming at the mammalian counterpart. Furthermore, a brief comparison of the structural differences between mycobacterial and mitochondrial ATP synthase is discussed. Being a complex multi-subunit protein, ATP synthase offers multiple sites for potential inhibitors, including the a, c, ε, γ, and δ subunits. Inhibitors targeting these subunits are critically reviewed, providing insight into the design of better and more potent chemical entities with the potential for effective treatment regimens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707528PMC
http://dx.doi.org/10.1039/d4md00829dDOI Listing

Publication Analysis

Top Keywords

atp synthase
28
drug discovery
8
mycobacterial atp
8
atp
7
synthase
7
breaking energy
4
energy chain
4
chain atp
4
synthase potential
4
drug
4

Similar Publications

Incubation temperature affects both growth and energy metabolism in birds after hatching. Changes in cellular mechanisms, including mitochondrial function, are a likely but unexplored explanation for these effects. To test whether temperature-dependent changes to mitochondria may link embryonic development to the post-natal phenotype, we incubated Japanese quail eggs at constant low (36.

View Article and Find Full Text PDF

Background: After spinal cord injury (SCI), pro-inflammatory microglia accumulate and impede axonal regeneration. We explored whether secreted protein acidic and rich in cysteine (Sparc) restrains microglial inflammation and fosters neurite outgrowth.

Methods: Mouse microglial BV2 cells were polarized to a pro-inflammatory phenotype with lipopolysaccharides (LPSs).

View Article and Find Full Text PDF

ATP synthase subunit γ mediates Cry1Ac binding and toxicity in Grapholita molesta.

Pestic Biochem Physiol

November 2025

Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100

The insect midgut peritrophic membrane (PM) plays important roles in insect-microbe interactions. Bacillus thuringiensis (Bt) and its proteinaceous toxins are widely used for insect control. To understand the role of PM in insects against Bt toxins, this study selected Grapholita molesta Busck (Lepidoptera: Tortricidae), a worldwide pest infesting fruit trees, as the research subject.

View Article and Find Full Text PDF

Mitochondrial Complex V Deficiency Caused by a Homozygous Splice Variant in ATP5PO.

Am J Med Genet A

September 2025

Division of Clinical and Metabolic Genetics, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.

Most complex V subunits are nuclear encoded and so far, were not found in association with recognized Mendelian disorders. ATP5PO is a candidate gene for complex V mitochondrial disease. It encodes the oligomycin sensitivity-conferring protein (OSCP), an essential component of the "stalk" region that links the F1 and F0 domains of the ATP synthase complex.

View Article and Find Full Text PDF

The brain is a metabolically demanding organ as it orchestrates and stabilizes neuronal network activity through plasticity. This mechanism imposes enormous and prolonged energetic demands at synapses, yet it is unclear how these needs are met in a sustained manner. Mitochondria serve as a local energy supply for dendritic spines, providing instant and sustained energy during synaptic plasticity.

View Article and Find Full Text PDF