Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The superconducting diode effect (SDE) is defined by the difference in the magnitude of critical currents applied in opposite directions. It has been observed in various superconducting systems and attracted high research interests. However, the operating temperature of the SDE is typically low and/or the sample structure is rather complex. For the potential applications in non-dissipative electronics, efficient superconducting diodes working in zero magnetic field with high operating temperatures and a simple configuration are highly desired. Here, we report the observation of a SDE under zero magnetic field with operating temperatures up to 72 K and efficiency as high as 22% at 53 K in high-transition-temperature (high-T) cuprate superconductor BiSrCaCuO (BSCCO) flake devices. The rectification effect persists beyond two hundred sweeping cycles, confirming the stability of the superconducting diode. Our results offer promising developments for potential applications in non-dissipative electronics, and provide insights into the mechanism of field-free SDE and symmetry breakings in high-T superconductors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718281 | PMC |
http://dx.doi.org/10.1038/s41467-025-55880-4 | DOI Listing |