98%
921
2 minutes
20
Prostate cancer (PCa) is one of the most common malignancies for male individuals globally. Androgen deprivation therapy (ADT) initially demonstrated significant efficacy in treating PCa; however, most cases of PCa eventually progress to castration-resistant prostate cancer (CRPC), which becomes increasingly challenging to manage. Notably, the loss or disruption of primary cilia in PCa cells may play a critical role in the progression of the disease, and there are no reports on the role of circular RNAs in ciliogenesis. Thus, this warrants further investigation.In this study, key circular RNAs linked to prostate cancer progression, and enzalutamide resistance is identified. Specifically, it is found that hsa_circ_0005185 interacts with OTUB1 and RAB8A, serving as a molecular scaffold. Hsa_circ_0005185 mediates the binding of the deubiquitinase OTUB1 to RAB8A, resulting in the deubiquitination of RAB8A. Consequently, the stable expression of RAB8A promotes the regeneration of primary cilia and enhances the production of GLI3R, an inhibitory factor in the Hedgehog signaling pathway, thereby suppressing AR activity and slowing the progression of CRPC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11848605 | PMC |
http://dx.doi.org/10.1002/advs.202411675 | DOI Listing |
JAMA Netw Open
September 2025
Department of Urology, Center for Health Outcomes Research and Dissemination, University of Washington, Seattle.
Importance: Black individuals have a twofold higher rate of prostate cancer death in the US compared with the average population with prostate cancer. Few guidelines support race-conscious screening practices among at-risk Black individuals.
Objective: To examine structural factors that facilitate or impede access to prostate cancer screening among Black individuals in the US.
J Oncol Pharm Pract
September 2025
Department of Research & Development, Squad Medicine and Research (SMR), Amadalavalasa, Andhra Pradesh, India.
Cancer vaccines represent a transformative shift in oncology, aiming to prevent malignancies or treat established cancers by training the immune system to recognize tumor-specific or tumor-associated antigens. This review explores the diverse platforms and mechanisms supporting cancer vaccines, ranging from prophylactic vaccines such as HPV and hepatitis B vaccines that have significantly reduced virus-related cancers to therapeutic vaccines like Sipuleucel-T and T-VEC that extend survival in prostate cancer and melanoma. Vaccine types are classified, and delivery platforms including mRNA, peptide, dendritic cell and viral vector-based approaches are examined alongside pivotal clinical trial outcomes.
View Article and Find Full Text PDFEndocr Relat Cancer
September 2025
Department of Molecular, Cell and Developmental Biology, University of California Los Angeles;Los Angeles, CA 90095.
Age is a major risk factor for a range of diseases including prostate cancer. Understanding how age influences the susceptibility of normal prostate epithelial cells to cancer initiation is complicated by the fact that aging affects all tissues in the body. Assessing how various aging mechanisms influence the prostate epithelium is a necessary step to determine the critical factors associated with aging that increase prostate cancer risk.
View Article and Find Full Text PDFEndocr Connect
September 2025
Dysfunction of several WD40 family proteins causes diverse endocrine diseases. Until recently, MEP50, a WD40 protein, was considered a Gene of Unknown Significance (GUS) because no inherited diseases had been linked to its function. However, genetic inactivation of MEP50 in mouse models or somatic mutations in humans drive oncogenesis in several endocrine-related cancers, including those of the prostate, breast, and uterus.
View Article and Find Full Text PDFFront Genet
August 2025
Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
Background: Prostatic diseases, consisting of prostatitis, benign prostatic hyperplasia (BPH), and prostate cancer (PCa), pose significant health challenges. While single-omics studies have provided valuable insights into the role of mitochondrial dysfunction in prostatic diseases, integrating multi-omics approaches is essential for uncovering disease mechanisms and identifying therapeutic targets.
Methods: A genome-wide meta-analysis was conducted for prostatic diseases using the genome-wide association studies (GWAS) data from FinnGen and UK Biobank.