98%
921
2 minutes
20
Wetlands in the Qinghai-Tibet Plateau are a unique and fragile ecosystem undergoing rapid changes. We show two unique patterns of mercury (Hg) accumulation in wetland sediments. One is the 'surface peak' in monsoon-controlled regions and the other is the 'subsurface peak' in westerly-controlled regions. The former is attributed to the combined effects of increasing anthropogenic emissions and climate-induced changes in the cryosphere and wetland hydrology in the last 100-150 years. The climate changes in westerly-controlled regions in the last 50-70 years led to a fluctuation in hydrology and Hg peak in the sediment subsurface. The increase in legacy Hg input from soil erosion has largely enhanced the Hg accumulation rate in wetlands since the 1950s, especially in the proglacial wetlands. We highlight that accelerated glacier melting and permafrost thawing caused by global warming have altered geomorphology and hydrology, and affected Hg transport and accumulation in wetlands.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707873 | PMC |
http://dx.doi.org/10.1093/nsr/nwae414 | DOI Listing |
Glob Chang Biol
September 2025
State Key Laboratory of Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory of Earth Surface Processes, and College of Urban and Environmental Sciences, Peking University, Beijing, China.
Microbial nitrogen use efficiency (NUE) describes the partitioning of organic N between microbial growth and N mineralization, which is crucial for assessing soil N retention. However, how warming affects NUE along soil depth remains unclear. Based on a whole-soil-profile warming experiment (0 to 100 cm, +4°C) on the Qinghai-Tibetan Plateau, combined with O and N isotope labeling techniques, we determined soil carbon (C) composition, edaphic properties, and microbial parameters.
View Article and Find Full Text PDFNat Commun
September 2025
State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China.
Rising atmospheric vapor pressure deficit (VPD)-a measure of atmospheric dryness, defined as the difference between saturated vapor pressure (SVP) and actual vapor pressure (AVP)-has been linked to increasing daily mean near-surface air temperatures since the 1980s. However, it remains unclear whether the faster increases in daily maximum temperature (T) relative to daily minimum temperature (T) have contributed to rising VPD. Here, we show that the faster rise in T compared with T over land has intensified VPD from 1980 to 2023.
View Article and Find Full Text PDFBioelectrochemistry
September 2025
Radiation Microbiology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, 11371 Cairo, Egypt. Electronic address:
The rapid increase in population has driven the demand for fossil fuel energy, contributing to increased carbon emissions that ultimately accelerate global warming and climate change. Battery storage systems have many advantages over conventional energy sources. However, they face limitations such as energy storage, cost, and environmental hazards that come with the use of chemical binders.
View Article and Find Full Text PDFJ Therm Biol
September 2025
Department of Integrative Biology, University of South Florida, St. Petersburg, FL, USA. Electronic address:
Urbanization and climate warming have contributed to global amphibian declines in recent decades, and amphibians are particularly vulnerable to warming because temperature influences their physiological processes across all life stages. Tadpole responses to warming in tropical climates are relatively understudied, and previous studies demonstrated species-specific responses to warming temperature. Warming ponds may quicken tadpole development and increase thermal tolerances, but increasing local temperatures push populations towards their physiological limits.
View Article and Find Full Text PDFJ Therm Biol
September 2025
Department of Critical Care Medicine, the First Medical Cener, Chinese PLA General Hospital, Beijing, 100853, China. Electronic address:
Heat stroke (HS), a life-threatening heat-related disorder, is characterized by a rapid elevation of core body temperature exceeding 40 °C, accompanied by central nervous system (CNS) dysfunction and multiple organ dysfunction syndrome (MODS). With the escalating impact of global warming, the incidence of HS has risen progressively, posing a significant threat to global health. The CNS is one of the primary target organs in HS, and its injury mechanisms involve intricate interactions among inflammatory cascades, oxidative stress, programmed cell death, and blood-brain barrier (BBB) disruption.
View Article and Find Full Text PDF