A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Biomimetic Fingerprint-like Unclonable Optical Anticounterfeiting System with Selectively In Situ-Synthesized Perovskite Quantum Dots Embedded in Spontaneous-Phase-Separated Polymers. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Anticounterfeiting technologies meet challenges in the Internet of Things era due to the rapidly growing volume of objects, their frequent connection with humans, and the accelerated advance of counterfeiting/cracking techniques. Here, we, inspired by biological fingerprints, present a simple anticounterfeiting system based on perovskite quantum dot (PQD) fingerprint physical unclonable function (FPUF) by cooperatively utilizing the spontaneous-phase separation of polymers and selective in situ synthesis PQDs as an entropy source. The FPUFs offer red, green, and blue full-color fingerprint identifiers and random three-dimensional (3D) morphology, which extends binary to multivalued encoding by tuning the perovskite and polymer components, enabling a high encoding capacity (about 10, far surpassing that of biometric fingerprints). The strategy is compatible with mainstream production techniques that are widely used in traditional low-cost printed anticounterfeiting labels including spray printing, stamping, writing, and laser printing, avoiding complicated fabrication. Macrographical patterns and micro/nanofingerprint patterns with multiscale-tailorable inter-ridge sizes can be fused into a single FPUF label, satisfying different levels of anticounterfeiting requirements. Furthermore, a smart fused scheme of enhanced deep learning and fingerprint characteristic comparison is leveraged, by which high-efficiency, high-accuracy authentication of our FPUFs is achieved even for the increasingly huge FPUF databases and imperfectly captured images from users.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c20440DOI Listing

Publication Analysis

Top Keywords

anticounterfeiting system
8
perovskite quantum
8
anticounterfeiting
5
biomimetic fingerprint-like
4
fingerprint-like unclonable
4
unclonable optical
4
optical anticounterfeiting
4
system selectively
4
selectively situ-synthesized
4
situ-synthesized perovskite
4

Similar Publications