Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Diatomic catalysts featuring a tunable structure and synergetic effects hold great promise for various reactions. However, their precise construction with specific configurations and diverse metal combinations is still challenging. Here, a selective etching and metal ion adsorption strategy is proposed to accurately assign a second metal atom (M) geminal to the single atom site (M-N) for constructing diatomic sites (e.g., Fe-Pd, Fe-Pt, Fe-Ru, Fe-Zn, Co-Fe, Co-Ni, and Co-Cu). In this strategy, hydrogen peroxide selectively etches the positively charged carbon atoms near the M-N moiety (denoted as α-C) and produces vacancy, which could trap the M at the subsequent adsorption step. These catalysts show optimized electronic structure and enhanced oxygen reduction activity compared to single-site counterparts, and the representative Fe-Pd-NC and Co-Fe-NC catalysts stand as the most active oxygen reduction reaction catalysts (half-wave potential of 0.92 and 0.91 V, respectively). The selective etching of α-C in single-atom catalysts reported here represents a new post-treatment strategy for the targeting synthesis of diatomic sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c14760 | DOI Listing |