Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Deep learning is a promising strategy for modeling cis-regulatory elements. However, models trained on genomic sequences often fail to explain why the same transcription factor can activate or repress transcription in different contexts. To address this limitation, we developed an active learning approach to train models that distinguish between enhancers and silencers composed of binding sites for the photoreceptor transcription factor cone-rod homeobox (CRX). After training the model on nearly all bound CRX sites from the genome, we coupled synthetic biology with uncertainty sampling to generate additional rounds of informative training data. This allowed us to iteratively train models on data from multiple rounds of massively parallel reporter assays. The ability of the resulting models to discriminate between CRX sites with identical sequence but opposite functions establishes active learning as an effective strategy to train models of regulatory DNA. A record of this paper's transparent peer review process is included in the supplemental information.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11827711PMC
http://dx.doi.org/10.1016/j.cels.2024.12.004DOI Listing

Publication Analysis

Top Keywords

active learning
12
train models
12
enhancers silencers
8
transcription factor
8
crx sites
8
models
5
learning enhancers
4
silencers developing
4
developing neural
4
neural retina
4

Similar Publications

Background: Serving as peer supporters in later life has been linked to a greater sense of purpose and meaning in life. How the wisdom of older adults could be leveraged to improve the implementation of peer support work, however, has rarely been considered. We aimed to examine the perspectives of peer supporters in this study, including the challenges they encountered in practice and the strategies they developed to navigate their roles.

View Article and Find Full Text PDF

Cerebellar Stimulation Modulates Reward Processing: A High-definition Transcranial Direct Current Stimulation Study.

Cerebellum

September 2025

Neuropsychology and Applied Cognitive Neuroscience Laboratory, State Key Laboratory of Cognitive Science and Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.

Reward processing involves several components, including reward anticipation, cost-effort computation, reward consumption, reward sensitivity, and reward learning. Recent research has highlighted the cerebellum's role in reward processing. This study aimed to investigate the effects of cerebellar stimulation on reward processing using high-definition transcranial direct current stimulation (HD-tDCS).

View Article and Find Full Text PDF

Background And Objectives: Older adults living with dementia are a heterogeneous group, which can make studying optimal medication management challenging. Unsupervised machine learning is a group of computing methods that rely on unlabeled data-that is, where the algorithm itself is discovering patterns without the need for researchers to label the data with a known outcome. These methods may help us to better understand complex prescribing patterns in this population.

View Article and Find Full Text PDF

Colorectal cancer (CRC) remains a major global health burden, necessitating more effective and selective therapeutic approaches. Nanocarrier-based drug delivery systems offer significant advantages by enhancing drug accumulation in tumors, reducing off-target toxicity, and overcoming resistance mechanisms. This review provides a comprehensive overview of recent advancements in nanocarriers for CRC therapy, including passive targeting the enhanced permeability and retention (EPR) effect, and active targeting strategies that exploit specific tumor markers using ligands such as antibodies, peptides, and aptamers.

View Article and Find Full Text PDF

Accelerating Transition State Search and Ligand Screening for Organometallic Catalysis with Reactive Machine Learning Potential.

J Chem Theory Comput

September 2025

State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Department of Pharmaceutical Sciences, Institute of Chemical Process Systems Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.

Organometallic catalysis lies at the heart of numerous industrial processes that produce bulk and fine chemicals. The search for transition states and screening for organic ligands are vital in designing highly active organometallic catalysts with efficient reaction kinetics. However, identifying accurate transition states necessitates computationally intensive quantum chemistry calculations.

View Article and Find Full Text PDF