Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The study of hepatitis C virus (HCV) replication in cell culture is mainly based on cloned viral isolates requiring adaptation for efficient replication in Huh7 hepatoma cells. The analysis of wild-type (WT) isolates was enabled by the expression of SEC14L2 and by inhibitors targeting deleterious host factors. Here, we aimed to optimize cell culture models to allow infection with HCV from patient sera. We used Huh7-Lunet cells ectopically expressing SEC14L2, CD81, and a GFP reporter with nuclear translocation upon cleavage by the HCV protease to study HCV replication, combined with a drug-based regimen for stimulation of non-modified wild-type isolates. RT-qPCR-based quantification of HCV infections using patient sera suffered from a high background in the daclatasvir-treated controls. We therefore established an automated image analysis pipeline based on imaging of whole wells and iterative training of a machine learning tool, using nuclear GFP localization as a readout for HCV infection. Upon visual validation of hits assigned by the automated image analysis, the method revealed no background in daclatasvir-treated samples. Thereby, infection events were found for 15 of 34 high titer HCV genotype (gt) 1b sera, revealing a significant correlation between serum titer and successful infection. We further show that transfection of viral RNA extracted from sera can be used in this model as well, albeit with so far limited efficiency. Overall, we generated a robust serum infection assay for gt1b isolates using semi-automated image analysis, which was superior to conventional RT-qPCR-based quantification of viral genomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11680372PMC
http://dx.doi.org/10.3390/v16121871DOI Listing

Publication Analysis

Top Keywords

image analysis
16
patient sera
12
cell culture
12
hepatitis virus
8
semi-automated image
8
hcv replication
8
wild-type isolates
8
rt-qpcr-based quantification
8
background daclatasvir-treated
8
automated image
8

Similar Publications

Aims And Objective: The field of medical statistics has experienced significant advancements driven by integrating innovative statistical methodologies. This study aims to conduct a comprehensive analysis to explore current trends, influential research areas, and future directions in medical statistics.

Methods: This paper maps the evolution of statistical methods used in medical research based on 4,919 relevant publications retrieved from the Web of Science.

View Article and Find Full Text PDF

Functional PET (fPET) identifies stimulation-specific changes of physiological processes, individual molecular connectivity and group-level molecular covariance. Since there is currently no consistent analysis approach available for these techniques, we present a toolbox for unified fPET assessment. The toolbox supports analysis of data obtained with a variety of radiotracers, scanners, experimental protocols, cognitive tasks and species.

View Article and Find Full Text PDF

Background: Cerebrovascular reactivity reflects changes in cerebral blood flow in response to an acute stimulus and is reflective of the brain's ability to match blood flow to demand. Functional MRI with a breath-hold task can be used to elicit this vasoactive response, but data validity hinges on subject compliance. Determining breath-hold compliance often requires external monitoring equipment.

View Article and Find Full Text PDF

Background: Disruption of the blood-brain barrier (BBB) in high-grade brain tumors is characterized by contrast accumulation on diagnostic imaging. This window of opportunity study correlates contrast imaging features with the tumor distribution of BBB-permeable (levetiracetam) and -impermeable (cefazolin) drugs.

Methods: Patients with a clinical diagnosis of a high-grade brain tumor underwent MRI for surgical planning.

View Article and Find Full Text PDF

Objectives: Patients with connective tissue diseases (CTD) have a high incidence of cardiac involvement, which often presents insidiously and can progress rapidly, making it one of the leading causes of death. Multiparametric cardiovascular magnetic resonance (CMR) provides a comprehensive quantitative evaluation of myocardial injury and is emerging as a valuable tool for detecting cardiac involvement in CTD. This study aims to investigate the correlations between CMR features and serological biomarkers in CTD patients, assess their potential clinical value, and further explore the impact of pre-CMR immunotherapy intensity on CMR-specific parameters, thereby evaluating the role of CMR in the early diagnosis of CTD-related cardiac involvement.

View Article and Find Full Text PDF