Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Two-dimensional (2D) ferromagnetic materials are subjects of intense research owing to their intriguing physicochemical properties, which hold great potential for fundamental research and spintronic applications. Specifically, 2D van der Waals (vdW) ferromagnetic materials retain both structural integrity and chemical stability even at the monolayer level. Moreover, due to their atomic thickness, these materials can be easily manipulated by stacking them with other 2D vdW ferroic and nonferroic materials, enabling precise control over their physical properties and expanding their functional applications. Consequently, 2D vdW ferromagnetic materials-based heterostructures offer a platform to tailor magnetic properties and explore advanced spintronic devices. This review aims to provide an overview of recent developments in emerging 2D vdW ferromagnetic materials-based heterostructures and devices. The fabrication approaches for 2D ferromagnetic vdW heterostructures are primarily summarized, followed by a review of two categories of heterostructures: ferromagnetic/ferroic and ferromagnetic/nonferroic vdW heterostructures. Subsequently, the progress made in modulating magnetic properties and emergence of various phenomena in these heterostructures is highlighted. Furthermore, the applications of such heterostructures in spintronic devices are discussed along with their future perspectives and potential directions in this exciting field.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c14733DOI Listing

Publication Analysis

Top Keywords

ferromagnetic materials-based
12
vdw ferromagnetic
12
two-dimensional ferromagnetic
8
van der
8
der waals
8
heterostructures
8
ferromagnetic materials
8
materials-based heterostructures
8
magnetic properties
8
spintronic devices
8

Similar Publications

Sliding Ferroelectrics Induced Hybrid-Order Topological Phase Transitions.

Phys Rev Lett

June 2025

Beijing Institute of Technology, Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, School of Physics, Beijing 100081, China.

We propose ferroelectric layer sliding as a new approach to realize and manipulate topological quantum states in two-dimensional (2D) bilayer magnetic van der Waals materials. We show that stacking monolayer ferromagnetic topological states into layer-spin-locked bilayer antiferromagnetic structures, and introducing sliding ferroelectricity leads to asynchronous topological evolution of different layers (spins) owing to the existence of polarization potentials, thereby giving rise to rich layer-resolved topological phases. As a specific example, by means of a lattice model, we show that a bilayer magnetic 2D second order topological insulator (SOTI) reveals an unrecognized spin-hybrid-order topological insulator after undergoing ferroelectric sliding.

View Article and Find Full Text PDF

The eddy current testing (ECT) technique enables efficient and non-destructive conductivity measurement. However, conventional ECT is significantly influenced by the thickness of the material, often resulting in the arbitrary selection of excitation frequency. In addition, complex inverse calculations in the eddy current analytical model pose challenges for practical application.

View Article and Find Full Text PDF

Controllable Skyrmion Nucleation and Transition in a Confined Nanodisk for the Binarized Neuron Network of 2D Ferromagnet FeGeTe.

ACS Appl Mater Interfaces

June 2025

Academy for Engineering & Technology, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China.

The integration of skyrmions in 2D ferromagnetic materials and advanced spintronic devices enables energy-efficient computing for artificial synapses in neuromorphic architecture. Nucleation of skyrmions plays a critical role in ensuring high reliability and low energy consumption. However, the key challenge lies in selectively generating skyrmions, excluded from trivial bubbles and their controllable transition.

View Article and Find Full Text PDF

High-performance magnetic materials based on rare-earth intermetallic compounds are critical for energy conversion technologies. However, the high cost and supply risks of rare-earth elements necessitate the development of affordable alternatives. Another challenge lies in the inherent brittleness of current magnets, which limits their applications for high dynamic mechanical loading conditions during service and complex shape design during manufacturing towards high efficiency and sustainability.

View Article and Find Full Text PDF

Two-dimensional (2D) ferromagnetic materials are subjects of intense research owing to their intriguing physicochemical properties, which hold great potential for fundamental research and spintronic applications. Specifically, 2D van der Waals (vdW) ferromagnetic materials retain both structural integrity and chemical stability even at the monolayer level. Moreover, due to their atomic thickness, these materials can be easily manipulated by stacking them with other 2D vdW ferroic and nonferroic materials, enabling precise control over their physical properties and expanding their functional applications.

View Article and Find Full Text PDF