Mechanism of structural and functional changes of matcha bread dough during freezing storage.

Food Chem

College of Food and Health, Zhejiang Agriculture and Forestry University, No. 666 Wusu Road, Linan District, 311300 Hangzhou, Zhejiang Province, China. Electronic address:

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study aimed to investigate the effects of freezing duration and matcha concentration on the rheological properties, moisture distribution, and multiscale structure of dough. The results indicated that both freezing and high concentrations of matcha (≥1 %) significantly reduced the stiffness of the dough matrix, restricted its ability to expand during fermentation, and disrupted the structure of gluten protein. Furthermore, freezing induced moisture redistribution within the dough. Specifically, the water content in the 0 % matcha dough decreased by 1.5 %, indicating a weakening of protein-moisture interactions, disruption of disulfide bond conformations, and inhibition of disulfide bond aggregation in gluten proteins, thereby destabilizing the gluten network. Additionally, freezing negatively impacted yeast gas production capability, while matcha addition did not influence yeast activity. Moreover, low concentrations of matcha did not significantly impact the multiscale structure of the dough. This study provided crucial scientific insights for recipe optimization and quality control in bread production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.142695DOI Listing

Publication Analysis

Top Keywords

multiscale structure
8
structure dough
8
concentrations matcha
8
disulfide bond
8
matcha
6
dough
6
freezing
5
mechanism structural
4
structural functional
4
functional changes
4

Similar Publications

Dysregulated spine morphology is a common feature in the pathology of many neurodevelopmental and neuropsychiatric disorders. Overabundant immature dendritic spines in the hippocampus are causally related to cognitive deficits of Fragile X syndrome (FXS), the most common form of heritable intellectual disability. Recent findings from us and others indicate autophagy plays important roles in synaptic stability and morphology, and autophagy is downregulated in FXS neurons.

View Article and Find Full Text PDF

Functional synapses between neurons and small cell lung cancer.

Nature

September 2025

Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.

Small cell lung cancer (SCLC) is a highly aggressive type of lung cancer, characterized by rapid proliferation, early metastatic spread, frequent early relapse and a high mortality rate. Recent evidence has suggested that innervation has an important role in the development and progression of several types of cancer. Cancer-to-neuron synapses have been reported in gliomas, but whether peripheral tumours can form such structures is unknown.

View Article and Find Full Text PDF

Porous SiO/ZnO-carboxymethyl cellulose composite hydrogels for enhanced hemostatic efficacy and antibacterial activity.

Int J Biol Macromol

September 2025

School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China. Electronic address:

The development of effective hemostatic and antibacterial dressings remains a critical challenge in wound management. We report the design and fabrication of novel porous composite hydrogels composed of carboxymethyl cellulose (CMC), silica (SiO), and zinc oxide nanoparticles (ZnO NPs) . The incorporation of SiO and ZnO NPs into the CMC hydrogel matrix resulted in a unique multi-scale porous structure, characterized by interconnected holes of various sizes, which significantly enhanced the hydrogel's liquid absorption capacity and mechanical strength.

View Article and Find Full Text PDF

The myth of optimality in human movement science.

Neurosci Biobehav Rev

September 2025

Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE 68182, USA. Electronic address:

The concept of optimality dominates contemporary human movement science, with researchers across biomechanics, motor control, and neuroscience routinely explaining observed behaviors as solutions that maximize or minimize objective functions. This paper critiques the pervasive application of optimality principles in human movement science. We argue that optimization frameworks mischaracterize biological systems for several reasons: (1) Evolution produces sufficient rather than optimal adaptations without foresight; (2) Biological systems serve multiple functions simultaneously with context-dependent prioritization; (3) Structure-function relationships co-evolve rather than optimize for fixed targets; (4) The fractal, multiscale nature of physiological signals makes traditional optimization mathematically meaningless-there are no well-defined minima or maxima in fractal landscapes; (5) Optimality models implicitly invoke a homunculus that selects optimization criteria; and (6) The concept is methodologically circular and unfalsifiable, as any behavior can be retroactively modeled as optimal for some function.

View Article and Find Full Text PDF

Feeling the flow of time: Unraveling the time-dependent mechanics of living cells.

Phys Life Rev

August 2025

State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China; MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures (MLMS), Nanjing University of Aeronautics and Astronautics, Nanjing, 210016,

View Article and Find Full Text PDF