Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The use of unmanned aerial vehicle (UAV) has greatly improved pesticide effectiveness and control efficiency; however, the risk of inhalation exposure to pesticides caused by spray drift requires urgent attention. This study is the first to investigate residue distribution and inhalation exposure risk of airborne prothioconazole and its metabolite prothioconazole-desthio during UAV application. The maximum detected unit exposure of prothioconazole and prothioconazole-desthio in airborne particulate matter was 0.40 and 20.09 ng/m, respectively. For exposure risk assessment, inhalation bioavailability (BA) was incorporated to adjust the inhalation exposure level, and the corresponding values measured were 37.58 and 73.99%, respectively. Moreover, we observed pesticide accumulation in rat lungs and its cause of histological damage via oxidative stress following 10-day exposure. The margin of exposure for propiconazole and prothioconazole-desthio was calculated to be within an acceptable level; however, the values might be overestimated by 40 and 70% without considering inhalation bioavailability.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.4c08157DOI Listing

Publication Analysis

Top Keywords

inhalation exposure
16
airborne prothioconazole
8
unmanned aerial
8
exposure risk
8
inhalation bioavailability
8
exposure
7
inhalation
6
exposure airborne
4
prothioconazole caused
4
caused unmanned
4

Similar Publications

Background: Anesthetic exposure in young children raises concerns about neurodevelopmental safety, with preclinical evidence suggesting potential neurotoxicity of volatile anesthetics. This study aimed to assess whether the combination of dexmedetomidine and remifentanil, by reducing sevoflurane exposure, has any differential effect on neurodevelopmental outcomes in young children compared with sevoflurane alone.

Methods: This study was a prospective, double-blind, randomized clinical trial including children younger than 2 yr undergoing nonstaged, nonrepetitive surgeries.

View Article and Find Full Text PDF

Assessment of Ambient Air Pollution from Current-Use Pesticides (CUPs) Using Sorbent Impregnated Passive Air Samplers (SIP-PAS) in Bursa: Spatial and Temporal Variations, Source Identification, and Health Risk Evaluation.

Arch Environ Contam Toxicol

September 2025

Department of Environmental Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Mimar Sinan Mahallesi Mimar Sinan Bulvarı Eflak Caddesi No:177, 16310, Yıldırım, Bursa, Turkey.

This study investigates airborne concentrations of six insecticides widely used on crops grown in agricultural, semi-urban, and rural areas of Bursa Province, Türkiye. Sorbent-impregnated passive air samplers (SIP-PASs), consisting of polyurethane foam (PUF) disks impregnated with XAD-2 resin, were deployed at ten strategically selected sites representing diverse agricultural and demographic profiles within the province. Analytes were quantified using gas chromatography-mass spectrometry (GC-MS) for depuration compounds and liquid chromatography-tandem mass spectrometry (LC-MS/MS) for target insecticides.

View Article and Find Full Text PDF

Air pollution caused by pesticide drift poses a significant environmental health risk. The lungs are directly targeted by airborne pesticide exposure via inhalation; however, their inhalation toxicological data are poorly understood. In the present study, we evaluated the combined toxicity and interactions of lambda-cyhalothrin and its binary mixtures with eight insecticides at a concentration ratio of 1:1 in the non-small-cell lung cancer A549 line cells.

View Article and Find Full Text PDF

Occurrence, spatial distribution, and risk assessment of per- and polyfluoroalkyl substances in soil and groundwater of a petrochemical industrial park in China.

Environ Pollut

September 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Zhejiang Key Laboratory of Environment and Health of New Pollutants, School of Environment, Hangzhou Institute for Advanced Study, U

Per- and polyfluoroalkyl substances (PFAS) are extensively used in the petrochemical industry and pose considerable risks to the environment. However, systematic research on PFAS contamination in petrochemical industrial parks remains limited. This study focused on the occurrence, spatial distribution, and sources of 20 typical PFAS in soil (n = 19) and groundwater (n = 13) samples from a petrochemical industrial park in China.

View Article and Find Full Text PDF

Risk Assessment from Potential Exposure to Tetrabromobisphenol A (TBBPA) from Its Use in Electronics.

Food Chem Toxicol

September 2025

Science Strategies, LLC, PMB 1111, 2795 E. Cottonwood Parkway, Suite 300, Salt Lake City, UT 84121.

Tetrabromobisphenol A (TBBPA) is the most extensively used brominated flame retardant worldwide, primarily employed reactively in printed circuit boards and additively in plastic housings of electronic equipment. This study systematically evaluates human exposure to TBBPA from electronic devices and characterizes associated risks. A targeted literature review of 55 peer-reviewed studies published over the past 25 years was conducted, focusing on global TBBPA occurrence in environmental media, occupational and residential settings, and biological matrices.

View Article and Find Full Text PDF