Overexpression of AspAT alleviates the inhibitory effects of ammonium on root development in Populus tomentosa.

Biochem Biophys Res Commun

College of Forestry, Guizhou University, Guiyang, 550025, China; State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China. Electronic address:

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ammonium toxicity, resulting from prolonged use of ammonium as the sole nitrogen source, can lead to physiological and morphological disorders, ultimately stunting plant growth. Enhancing ammonium assimilation efficiency has been extensively explored as a strategy to mitigate ammonium toxicity. However, the role of AspAT, a key enzyme in nitrogen assimilation, remains underexplored. This study investigates the function of AspAT in alleviating ammonium toxicity and uncovers the underlying physiological mechanisms. The results show that two Populus AspAT genes, AspAT13 and AspAT15, exhibit the highest expression levels in roots and are induced by exogenous ammonium. Overexpression of AspAT13 and AspAT15 in transgenic plants results in increased root biomass. In these plants, the activities of key nitrogen assimilation enzymes (GS and GOGAT) are significantly enhanced, along with increases in soluble protein, soluble sugar, and free amino acid contents. Additionally, the activities of antioxidant enzymes, such as SOD and CAT, are elevated, and ammonium content in the roots is significantly reduced. Moreover, the levels of hormones, including IAA, ACC, IBA, and BR, are significantly increased in the roots of transgenic plants. Our findings suggest that AspAT13 and AspAT15 play essential roles in mitigating ammonium toxicity, a process closely linked to enhanced nitrogen assimilation, antioxidant systems, and the regulation of auxin and brassinosteroid (BR) signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2024.151263DOI Listing

Publication Analysis

Top Keywords

ammonium toxicity
16
nitrogen assimilation
12
aspat13 aspat15
12
ammonium
9
transgenic plants
8
overexpression aspat
4
aspat alleviates
4
alleviates inhibitory
4
inhibitory effects
4
effects ammonium
4

Similar Publications

Phosphorylated structural analogs of Benzalkonium Chloride-diisopropoxyphosphorylmethane (dimethyldodecylammonium) bromide 1 (phosphorylated quaternary ammonium salt) and isopropoxyphosphorylmethane (dimethylalkylammonium) 2 (phosphorylated betaine) were synthesized. The structure of compound 1 was confirmed by single crystal X-ray diffraction study. The antibacterial, antifungal, and ecotoxicological profiles of the synthesized compounds were evaluated against aquatic organisms and flowering plants.

View Article and Find Full Text PDF

Evaluation of novel surfactants for the decontamination of chemical warfare agents.

Toxicol Mech Methods

September 2025

Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, Hradec Kralove, University of Defence, Brno, Czech Republic.

The decontamination of chemical warfare agents or compounds involved in chemical industry incidents poses a significant challenge to environmental protection and human health. These compounds are highly toxic and could be relatively resistant to conventional decontamination methods. In recent years, surfactants have emerged as a promising option, as they can enhance the solubility of organophosphorus compounds in aqueous solutions while promoting their degradation or adsorption onto surfaces.

View Article and Find Full Text PDF

The cytoplasmic N- and C-termini are dispensable for SLAH3 to mediate nitrate-dependent ammonium detoxification in Arabidopsis.

Biochem Biophys Res Commun

August 2025

Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China. Electronic address: xiaochb@lz

Ammonium (NH) toxicity significantly limits nitrogen use efficiency (NUE) in agriculture. Nitrate (NO) supplementation mitigates this toxicity, with the anion channel SLAH3 playing a central role by mediating NO efflux to counteract NH-induced rhizosphere acidification. SLAH3, a plasma membrane protein with ten transmembrane domains and cytosolic N- and C-termini, is intrinsically silent.

View Article and Find Full Text PDF

Lysophosphatidylcholine (LPC) has been the subject of research for many years, but its role in lipid turnover is still not fully understood, neither its role in cancer development and progression. A crucial aspect in LPC research is its efficient and fast extraction from plasma and tissues to use LPC as a biomarker in clinical settings. The extraction methods commonly in use like Bligh & Dyer require the use of toxic halogenated solvents and are time consuming due to multiple extraction steps and subsequent solvent evaporation.

View Article and Find Full Text PDF

Discovery of novel xanthotoxin-pyridine quaternary ammonium derivatives with membrane-targeting mode of action as potential antimicrobials against methicillin-resistant Staphylococcus aureus.

Eur J Med Chem

September 2025

Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province,

Methicillin-resistant Staphylococcus aureus (MRSA) is a major global health threat owing to its multi-drug resistance, creating an urgent need for novel antibiotics. This study focused on developing anti-MRSA agents by designing and synthesizing 30 xanthotoxin-pyridine quaternary ammonium derivatives, followed by evaluating their antibacterial activity and dissecting their mechanism of action against MRSA. Among all derivatives, III13 demonstrated as the most promising candidate: it exhibited potent anti-MRSA activity (MIC = 1 μg/mL), low cytotoxicity, minimal hemolysis, rapid bactericidal effects, and the ability to disrupt biofilms.

View Article and Find Full Text PDF